

International Journal of communication and computer Technologies, ISSN: 2278-9723

Available at http://www.ijccts.org

 Volume 02 – Issue: 01 Page 47

International Journal of Communication and Computer Technologies www.ijccts.org

FAQ-MAST TCP for Secure Download

 Christo Ananth*, S.Esakki Rajavel

1
,

 I.AnnaDurai
2
,A.Mydeen@SyedAli

3
,C.Sudalai@UtchiMahali

4
, M.Ruban Kingston

5

*,1,2,3,4,5

 (Department of Electronics and Communication Engineering, Francis Xavier Engineering College)

Received: 12-01-2014, Revised: 24-03-2014, Accepted: 30-04-2014, Published online: 01-06-2014

ABSTRACT

The innovative congestion control algorithm named FAQ-MAST

TCP (Fast Active Queue Management Stability Transmission

Control Protocol) is aimed for high-speed long-latency networks.

Four major difficulties in FAQ-MAST TCP are highlighted at both

packet and flow levels. The architecture and characterization of

equilibrium and stability properties of FAQ-MAST TCP are

discussed. Experimental results are presented comparing the first

Linux prototype with TCP Reno, HSTCP, and STCP in terms of

throughput, fairness, stability, and responsiveness. FAQ-MAST

TCP aims to rapidly stabilize high-speed long-latency networks

into steady, efficient and fair operating points, in dynamic sharing

environments, and the preliminary results are produced as output

of our project. The Proposed architecture is explained with the

help of an existing real-time example as to explain why FAQ-MAST

TCP download is chosen rather than FTP download. The Paper is

concluded with the results of the new congestion control algorithm

aided with the graphs obtained during its simulation in NS2.

Keywords – Congestion Control, FAQ-MAST TCP,

HSTCP, Reno TCP, STCP

I. INTRODUCTION

Congestion control is a distributed algorithm to share

network resources among competing users. It is important in

situations where the availability of resources and the set of

competing users vary over time unpredictably, yet efficient

sharing is desired. These constraints, unpredictable supply and

demand and efficient operation, necessarily lead to feedback

control as the preferred approach, where traffic sources dy-

namically adapt their rates to congestion in their paths. On the

Internet, this is performed by the Transmission Control

Protocol (TCP) in source and destination computers involved in

data transfers. The congestion control algorithm in the current

TCP, which we refer to as Reno, was developed in 1988 and

has gone through several enhancements since. It has performed

remarkably well and is generally believed to have prevented

severe congestion as the Internet scaled up by six orders of

magnitude in size, speed, load, and connectivity, if is also well-

known, however, that as bandwidth-delay product continues to

grow, TCP Reno will eventually become a performance

bottleneck itself. The following four difficulties contribute to

the poor performance of TCP Reno in networks with large

bandwidth-delay products: 1) at the packet level, linear

increase by one packet per Round-Trip Time (RTT) is too

slow, and multiplicative decrease per loss event is too drastic.

2) At the flow level, maintaining large average congestion

windows requires an extremely small equilibrium loss

probability.3) at the packet level, oscillation is

unavoidable because TCP uses a binary congestion signal

(packet loss). 4) At the flow level, the dynamics is unstable,

leading to severe oscillations that can only be reduced by the

accurate estimation of packet loss probability and a stable

design of the How dynamics.

These difficulties are explained in detail in Section II.

Here delay-based approach is motivated. Delay-based

congestion control has been proposed. Its advantage over loss-

based approach is small at low speed, but decisive at high

speed, as we will argue below. As pointed out in. delay can be

a poor or untimely predictor of packet loss and therefore using

a delay-based algorithm to augment the basic AIMD (Additive

Increase Multiplicative Decrease) algorithm of TCP Reno is the

wrong approach to address the above difficulties at large

windows. Instead, a new approach that fully exploits delay as a

congestion measure, augmented with loss information, is

needed. FAQ-MAST TCP uses this approach. Using queuing

delay as the congestion measure has two advantages.

First, queuing delay can be more accurately estimated

than loss probability both because packet losses in networks

with large bandwidth-delay product are rare events (probability

on the order 10-8 or smaller), and because loss samples provide

coarser information than) queuing delay samples. Indeed,

measurements of delay are noisy, just as those of loss

probability. Each measurement of packet loss (whether a

packet is lost) provides one bit of information for the filtering

of noise. Whereas each measurement of queuing delay provides

International Journal of communication and computer Technologies, ISSN: 2278-9723

Available at http://www.ijccts.org

 Volume 02 – Issue: 01 Page 48

International Journal of Communication and Computer Technologies www.ijccts.org

multi-bit information, this makes it easier for the equation-

based implementation to stabilize a network into a steady state

with a target fairness and high utilization. Second, the dynamics

of queuing delay seems to have the right scaling with respect to

network capacity. This helps maintain stability as a network

scales up in capacity. In Section III, the architecture of the

proposed system is discussed.

The architecture is laid to implement the design; Even

though the discussion is in the context of FAQ-MAST TCP the

architecture can also serve as a general framework to guide the

design of other congestion control mechanisms. Not necessarily

limited to TCP, for high-speed networks. The main components

in the architecture can be designed separately and upgraded

asynchronously. Unlike the conventional design, FAQ-MAST

TCP can use the same window and burstiness control

algorithms regardless of whether a source is in the normal state

or the loss recovery state. This leads to a clean separation of

components in both functionality and code structure. We then

present an overview of some of the algorithms implemented in

our current prototype.

A mathematical model of the window control

algorithm is presented. In particular, FAQ-MAST TCP does not

penalize flows with large propagation delays, and it achieves

weighted proportional fairness. For the special case of single

bottleneck link with heterogeneous flows, we prove that the

window control algorithm of FAQ-MAST TCP is globally

stable, in the absence of feedback delay. Moreover, starting

from any initial state, a network converges exponentially to a

unique equilibrium.

In Section IV, the performance of FAQ-MAST TCP

is compared with Reno, HSTCP (High-speed TCP, and STCP

(Scalable TCP), using their default parameters. In these

experiments, FAQ-MAST TCP achieved the best performance

under each criterion, while HSTCP and STCP improved

throughput and responsiveness over Reno at the cost of fairness

and stability. Section V concludes the paper with scope for

future study.

II. PROBLEMS AT LARGE WINDOWS
A congestion control algorithm can be designed at

two levels. The flow- level (macroscopic) design aims to

achieve high utilization, low queuing delay and loss, fairness,

and stability. The packet - level design implements these (low-

level goals within the constraints imposed by end-to-end

control. Historically for TCP Reno, packet-level

implementation was introduced first. The resulting flow -level

properties, such as fairness, stability, and the relationship

between equilibrium window and loss probability, were then

understood as an afterthought. In contrast, the packet-level

designs of HSTCP, STCP, and FAQ-MAST TCP are explicitly

guided by flow-level goals.

2.1. Packet and flow level modeling

The congestion avoidance algorithm of TCP Reno

and its variants have the form of AIMD. The pseudo code for

window adjustment is: Ack: w ← w+ (1/w), Loss: w← w-

(1/w) this is a packet-level model, but it induces certain flow-

level properties such as throughput, fairness, and stability.

These properties can be understood with a flow-level model of

the AIMD algorithm. The window of size increases by 1 packet

per RTT and decreases per unit time by xi (t) pi (t). (1/2).

(4wi(t)/3) packets where xi(t) = wi(t)/Ti(t) packets/sec. Ti(t) is

the round-trip time and pi(t) is the (delayed) end to end loss

probability, in period t. Here 4wi (t)/3 is the peak window size

that gives the ―average‖ window of wi (t). Hence a flow-level

model of AIMD is:

w* i (t) = (1/Ti(t))-(2/3).xi(t).pi(t).wi(t) (1)

Setting wi(t)= 0 in yields the well known 1/√p

formula for TCP Reno discovered, which relates loss

probability to window size in equilibrium.

p*
i = (3/(2w*

i)
2) (2)

In summary (1) and (2) describe the flow-level

dynamics and the equilibrium, respectively, for TCP Reno. It

turns out that different variants of TCP all have the same

dynamic structure at the flow level.

By defining ki (wi, Ti) = (1/Ti) & ui(wi , Ti) = 1.5/wi
2. And

noting that

wi (t) = k (t). (1 – (pi (t)/ui (t)) (3)

where we have used the shorthand ki(t)= ki(wi(t), Ti(t)) and

ui(t)= ui(wi(t), Ti(t)). Equation (3) can be used to describe all

known TCP variants, and different variants differ in their

choices of the gain function ki and the marginal utility function

ui, and whether the congestion measure pi is loss probability or

queuing delay.

Next, we illustrate the equilibrium and dynamics

problems of TCP Reno, at both the packet and flow levels, as

bandwidth-delay product increases.

2.2. Equilibrium Problem

The equilibrium problem at the flow level is

expressed in (2): the end-to-end loss probability must be

exceedingly small to sustain a large window size, making the

equilibrium difficult to maintain in practice, as bandwidth-

delay product increases.

Even though equilibrium is in flow-level notion, this

problem manifests itself at the packet level, where a source

International Journal of communication and computer Technologies, ISSN: 2278-9723

Available at http://www.ijccts.org

 Volume 02 – Issue: 01 Page 49

International Journal of Communication and Computer Technologies www.ijccts.org

increments its window too slowly and decrements it too

drastically. When the peak window is 80,000-packct

(corresponding to an "average" window of 60,000 packets),

which is necessary to sustain 7.2Gbps using 1,500-byte packets

with a RTT of l00ms, it takes 40,000 RTTs or almost 70

minutes, to recover from a single packet loss. The increment

function for Reno (and for HSTCP) is almost indistinguishable

from the x axis. Moreover, the gap between the increment and

decrement functions grows rapidly as wi increases. Since the

average increment and decrement must be equal in equilibrium,

the required loss probability can be exceedingly small at large

wi. This picture is thus simply a visualization of (2). To address

the difficulties of Reno at large window sizes, HSTCP and

STCP increase more aggressively and decrease more gently.

2.3. Dynamic Problems

The causes of the oscillatory behavior of TCP Reno lie in its

design at both the packet and flow levels. At the packet level,

the choice of binary congestion signal necessarily leads to

oscillation, and the parameter setting in Reno worsens the

situation as bandwidth-delay product increases. At the flow

level, the system dynamics given by (I) is unstable at large

bandwidth-delay products.

III. ARCHITECTURE AND ALGORITHMS
The congestion control mechanism of TCP into four

components in Figure 3. These four components are

functionally independent so that they can be designed

separately and upgraded asynchronously. In this section, we

focus on the two parts that we have implemented in the current

prototype.

Data

Control

Window

Control

Burstiness

Control

 Estimation

 TCP Protocol Processing

 Fig 1. Architecture of FAQ-MAST TCP

The data control component determines which

packets to transmit, window control determines how many

packets to transmit, and burstiness control determines when to

transmit these packets. These decisions are made based on

information provided by the estimation component. Window

control regulates packet transmission at the RTT timescale,

while burstiness control works at a smaller timescale. In the

following subsections, we provide an overview of window

control and algorithms implemented in our current prototype.

3.1. Estimation

This component provides estimations of various input pa-

rameters to the other three decision-making components. It

computes two pieces of feedback information for each data

packet sent. When a positive acknowledgment is received, it

calculates the RTT for the corresponding data packet and

updates the average queuing delay and the minimum RTT.

When a negative acknowledgment (signaled by three duplicate

acknowledgments or timeout) is received, it generates a loss

indication for this data packet to the other components. The

estimation component generates both a multi-bit queueing

delay sample and a one-bit loss-or-no loss sample for each data

packet. The queuing delay is smoothed by taking a moving

average with the weight η(t) := min{3wi(t), 1/4} that depends

on me window wi(t) at time t as follows. The k-th RTT sample

Ti (k) updates the average RTT Ŧi (k) according to:

Ŧi (k+1) = (1 – η (tk) Ŧi (k) + η (tk) Ti (k) (4)

 Where tk is the time at which the k-th RTT sample is

received. Taking di(k) to be the minimum RTT observed so far

, the average queuing delay is estimated as qi(k) = Ŧi(k) - di(k).

The weight η (t) is usually much smaller than the weight (1/8)

used in TCP Reno. The average RTT Ŧi (k) attempts to track

the average over one congestion window. During each RTT an

entire window worth of RTT samples are received if every

packet is acknowledged. Otherwise, if delayed Ack is used, the

number of queueing delay samples is reduced so η (t) should be

adjusted accordingly.

3.2. Window Control

The window control component determines

congestion window based on congestion information —

queuing delay and packet loss, provided by the estimation

component. A key decision in our design that departs from

traditional TCP design is that the same algorithm is used for

congestion window computation independent of the state of the

sender. For example, in TCP Reno (without rate halving),

congestion window is increased by one packet every RTT

when there is no loss, and increased by one for each duplicate

ack during loss recovery. In FAQ-MAST TCP, we would like

to use the same algorithm for window computation regardless

of the sender. The congestion control mechanism reacts to both

queuing delay and packet loss. Under normal network

conditions, FAQ-MAST TCP periodically updates the

congestion window based on the average RTT and average

queueing delay provided by the estimation component,

according to (5):

International Journal of communication and computer Technologies, ISSN: 2278-9723

Available at http://www.ijccts.org

 Volume 02 – Issue: 01 Page 50

International Journal of Communication and Computer Technologies www.ijccts.org

W ← min {2w, (1-γ) w + γ ((base RTT /RTT) w + a (w,

qdelay)} (5)

where γ € (0,1),base RTT is the minimum RTT observed

so far, and qdelay is the end-to-end (average) queueing delay. In

our current implementation, congestion window changes over

two RTTs: it is updated in one RTT and frozen in the next. The

update is spread out over the first RTT in a way such that

congestion window is no more than doubled in each RTT. The

function a (w, qdelay) is chosen to be a constant at all times. This

produces linear convergence when the qdelay is zero.

Alternatively, we can use a constant a only when qdelay is non

zero and a proportional to window. a (w, qdelay) = aw. In this

case when qdelay is zero FAQ-MAST performs multiplicative

increase and grows exponentially at rate a to a neighborhood of

qdelay >0.

3.3. Packet- Level Implementation

It is important to maintain an abstraction as the code

evolves. This abstraction should describe the high-level

operations each component performs based on external inputs,

and can serve as a road map for future TCP implementations as

well as improvements to the existing implementation.

Whenever a non-trivial change is required, one should first

update this abstraction to ensure that the overall packet-level

code would he built on a sound underlying foundation. Since

TCP is an event-based protocol, our control actions should be

triggered by the occurrence of various events. Hence, we need

to translate our flow-level algorithms into event-based packet-

level algorithms. There are four types of events that FAQ-

MAST TCP reacts to: on the reception of an acknowledgment,

after the transmission of a packet, at the end of a RTT, and for

each packet loss.

For each acknowledgment received, the estimation

component computes the average queueing delay, and the

burstiness control component determines whether packets can

be injected into the network. For each packet transmitted, the

estimation component records a time-stamp, and the burstiness

control component updates corresponding data structures for

book-keeping. At a constant time interval, which we check on

the arrival of each acknowledgment, window control calculates

a new window size. At the end of each RTT, burstiness

reduction calculates the target throughput using the window and

RTT measurements in the last RTT. Window pacing will then

schedule to break up a large increment in congestion window

into smaller increments over time. During loss recovery,

congestion window should be continually updated based on

congestion signals from the network. Upon the detection of a

packet loss event, a sender determines whether to retransmit

each un-acknowledged packet right away or hold off until a

more appropriate time.

Each source I adapt wi (t) periodically according to

wi(t+1)=γ((diwi(t)/(di+qi(t))+ai(wi(t),qi(t))+(1-γ)wi(t) (6)

Where γ € (0, 1), at time t, and ai(wi, qi)is defined by:

ai (wi, qi) = {aiwi if qi=0, ai, otherwise (7)

A key departure in our model from those in the

literature is that we assume that a source's send rate defined as

xi (t) =wi (t)/Ti (t), cannot exceed the through put it receives

.This is justified because of self-clocking: one round-trip time

after a congestion window is increased, packet transmission

will be clocked at the same rate as the throughput the flow

receives. A consequence of this assumption is that the link

queueing delay vector, p(t), is determined implicitly by die

instantaneous window size in a static manner: given wi(t)=wi

for all i, the link queueing delays pl(t) = pl(t) > 0 for all l are

given by:

The equilibrium values of windows w* and delays p* of the

network defined by Equations (6) & (7) can be characterized as

follows. Consider the utility maximization problem.

Max Σ ailogxi s.t. Rx < c (8)

and the following dual problem

min Σ clpl - Σailog ΣRlipl. (9)

3.4. Theorem I

 Suppose R has full row rank. The unique equilibrium

point (w*,p*) of the network is defined by (6)—(8) exists and is

such that x* = (xi
* = wi/(di+qi

*),¥i) is the unique maximiser of

(9) and p* is the unique minimiser of (10).This implies in

particular that the equilibrium rate x * is ai – weighted

proportionally fair.

 Theorem I implies that FAQ-MAST TCP has the

same equilibrium properties as TCP Vegas. It s throughput is

given by

xi = ai / qi (10)

 In particular it does not penalize sources with large

propogation delays di the relation (11) also implies that in

equilibrium source I maintains ai packets in the buffers along its

path. Hence the total amount off buffering in the network must

be at least Σiai packets in order to reach the equilibrium. Global

stability in a general network in the presence of feedback delay

is an open problem. State-of-the-art results either prove global

stability while ignoring feedback delay, or local stability in the

presence of feedback delay. Our stability result is restricted to a

single link in the absence of delay.

International Journal of communication and computer Technologies, ISSN: 2278-9723

Available at http://www.ijccts.org

 Volume 02 – Issue: 01 Page 51

International Journal of Communication and Computer Technologies www.ijccts.org

3.5. Theorem 2

 Suppose there is a single link with capacity c. Then

the network defined by (6)-(8) is globally stable, and converges

geometrically to the unique equilibrium (w*, p*).The basic idea

of the proof is to show that the iteration from w (t) to w (t + 1)

defined by (6)--(8) is a CONTRACTION mapping. Hence w (t)

converges geometrically to the unique equilibrium. Some

properties follow from the proof of Theorem 2.

1) Starting from an initial point (w (0), p (0)) the link is fully

utilized, i.e... Equality holds in (8), after a finite time.

2) The queue length is lower and upper bounded after a finite

amount of time.

IV. SIMULATION RESULTS

Some preliminary experiments are conducted on

dummy net test bed kernel comparing the performance of

various new TCP algorithms as well as the Linux TCP

implementation. It is important to evaluate them not only in

static environments, but also dynamic environments where

flows come and go; and not only in terms of end-to-end

throughput, but also queue behavior in the network. In this

study, we compare performance among TCP connections of the

same protocol sharing a single bottleneck link. Our test bed

router ran dummy net under Free-BSD. We configured dummy

net to create paths or pipes of different delays, 50, 100, 150,

and 200ms, using different destination port numbers on the

receiving machine. We then created another pipe to emulate a

bottleneck capacity of 800 Mbps and a buffer size of 2,000

packets, shared by all the delay pipes. Due to our need to

emulate a high-speed bottleneck capacity, we increased the

scheduling granularity of dummy net events. We recompiled

the FreeBSD kernel so the task scheduler ran every 1ms. We

also increased the size of the IP layer interrupt queue to 3000 to

accommodate large bursts of packets.

We instrumented both the sender and the dummy net

router to capture relevant information for protocol evaluation.

For each connection on the sending machine, the kernel

monitor captured the congestion window, the observed base

RTT, and the observed queueing delay. On the dummy net

router, the kernel monitor captured the throughput at the

dummy net bottleneck, the number of lost packets, and the

average queue size every two seconds. We retrieved the

measurement data after the completion of each experiment in

order to avoid disk I/O that may have interfered with the

experiment itself.

We tested four TCP implementations: FAQ-MAST,

HSTCP, STCP, and Reno (Linux implementation). The FAQ-

MAST TCP is based on Linux 2.4.20 kernel, while the rest of

the TCP protocols are based on Linux 2.4.19 kernel. We ran

tests and did not observe any appreciable difference between

the two plain Linux kernels, and the TCP source codes of the

two kernels are nearly identical. Linux TCP implementation

includes all of the latest RFCs such as New Reno, SACK, D-

SACK, and TCP high performance extensions.

4.1. Overall Evaluation

We use the output of iperf for our quantitative

evaluation. Each iperf session in our experiments produced

five-second averages of its throughput. This is the data rate

(i.e., good put) applications such as iperf receives, and is

slightly less than the bottleneck bandwidth due to IP and

Ethernet packet headers.

Let xi (k) be the average throughput of flow i in the

five-second period k. Most tests involved dynamic scenarios

where flows joined and departed. For the definitions below,

suppose the composition of flows changes in period k=1…..m,

and changes again over period k = m+1 so that [1, m] is the

maximum-length interval over which the- same equilibrium

holds. Suppose there are n active flows in this interval, indexed

by i=1……, n.

Let

 (11)

be the average throughput of flows i over this interval. We now

define our performance metrics for this interval [1,m] using

these throughput measurements.

1) Throughput: The average aggregate throughput for the

interval [l, m] is defined as:

 (12)

2) Intra-protocol fairness: Jain's fairness index for the interval

[1,m] is defined as:

 (13)

F € (0, 1) and F = 1 is ideal (equal sharing).

International Journal of communication and computer Technologies, ISSN: 2278-9723

Available at http://www.ijccts.org

 Volume 02 – Issue: 01 Page 52

International Journal of Communication and Computer Technologies www.ijccts.org

3) Stability: The stability index of flow i is the sample standard

deviation normalized by the average throughput:

 (14)

The smaller the stability index, the less oscillation a source

experiences. The stability index for interval [0, m] is the

average over the n active sources:

 (15)

4) Responsiveness: The responsiveness index measures

the speed of convergence when the network equilibrium

changes at k=1, i.e. when flows join or depart. Let xi (k) be the

running average by period k < m:

 (16)

For each TCP protocol, we obtain one set of

computed values for each evaluation criterion for all of our

experiments. We plot the CDF (cumulative distribution

function) of each set of values.

4.2. Real-time application presently using FAQ-MAST

TCP download

 Torrent is a peer-to-peer file sharing protocol used for

distributing large amounts of data. Bit Torrent is one of the

most common protocols for transferring large files, and by

some estimates it accounts for about 35% of all traffic on the

entire Internet. The protocol works initially when a file provider

makes his file (or group of files) available to the network. This

is called a seed and allows others, named peers, to connect and

download the file. Each peer who downloads a part of the data

makes it available to other peers to download. After the file is

successfully downloaded by a peer, many continue to make the

data available, becoming additional seeds. This distributed

nature of Bit Torrent leads to a viral spreading of a file

throughout peers. As more seeds get added, the likelihood of a

successful connection increases exponentially. Relative to

standard Internet hosting, this reduces the original

distributor's hardware and bandwidth resource costs. It is now

maintained by Cohen's company Bit Torrent, Inc. there are

numerous Bit Torrent clients available for a variety

of computing platforms. According to isoHunt, the total

amount of shared content is currently more than 1.1 terabytes.

A peer is any computer running an instance of a client. To

share a file or group of files, a peer first creates a small file

called a "torrent" (e.g. MyFile.torrent). This file

contains metadata about the files to be shared and about

the tracker, the computer that coordinates the file distribution.

Peers that want to download the file must first obtain a torrent

file for it, and connect to the specified tracker, which tells them

from which other peers to download the pieces of the file.

Though both ultimately transfer files over a network,

a Bit Torrent download differs from a classic full-

file HTTP request in several fundamental ways: Bit Torrent

makes many small data requests over different TCP sockets,

while web browsers typically make a single HTTP

GET request over a single FTP socket. Bit Torrent downloads

in a random or in a rarest-first approach that ensures high

availability, while HTTP downloads in a sequential manner.

Taken together, these differences allow Bit Torrent to

achieve much lower cost to the content provider, much higher

redundancy, and much greater resistance to abuse or to "flash

crowds" than a regular HTTP server. However, this protection

comes at a cost: downloads can take time to rise to full speed

because it may take time for enough peer connections to be

established, and it takes time for a node to receive sufficient

data to become an effective up loader. As such, a typical Bit

Torrent download will gradually rise to very high speeds, and

then slowly fall back down toward the end of the download.

This contrasts with an HTTP server that, while more vulnerable

to overload and abuse, rises to full speed very quickly and

maintains this speed throughout.

http://en.wikipedia.org/wiki/Peer-to-peer
http://en.wikipedia.org/wiki/File_sharing
http://en.wikipedia.org/wiki/Communications_protocol
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Exponential_function
http://en.wikipedia.org/wiki/Internet_hosting_service
http://en.wikipedia.org/wiki/Hardware
http://en.wikipedia.org/wiki/Bandwidth_(computing)
http://en.wikipedia.org/wiki/BitTorrent,_Inc.
http://en.wikipedia.org/wiki/BitTorrent_client
http://en.wikipedia.org/wiki/Computing_platform
http://en.wikipedia.org/wiki/IsoHunt
http://en.wikipedia.org/wiki/Petabytes
http://en.wikipedia.org/wiki/Metadata
http://en.wikipedia.org/wiki/BitTorrent_tracker
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/HTTP#request_methods
http://en.wikipedia.org/wiki/HTTP#request_methods
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
http://en.wikipedia.org/wiki/Slashdot_effect
http://en.wikipedia.org/wiki/Slashdot_effect
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

International Journal of communication and computer Technologies, ISSN: 2278-9723

Available at http://www.ijccts.org

 Volume 02 – Issue: 01 Page 53

International Journal of Communication and Computer Technologies www.ijccts.org

Fig.2.Rate (Packets/seconds) Vs Time(seconds)

Fig.2. shows the Rate in Packets/seconds versus Time

in seconds of the proposed method. Source 1 (FAQ-MAST

TCP) leads other TCPs.

Fig.3.Queue Size(Packets) Vs Time(seconds)

In Fig.3., Forward Queue shows increased

performance than the backward queue in the proposed method

Fig.4.Congestion Window (Packets) Vs Time(seconds)

Fig.4 shows the performance of Congestion window

in Packets w.r.t time in seconds which outsmarts the

performance of Reno TCP and STCP.

Fig.5.RTT(Seconds) Vs Time(seconds)

 Figure 5 shows the value of Round Trip Time in

seconds w.r.t Time in seconds for FAQ-MAST TCP and Reno

TCP. FAQ-MAST TCP outsmarts the performance of Reno

TCP in former Graph. Figure 6 shows the Performance of

Congestion window in packets w.r.t Time in seconds for the

proposed FAQ-MAST, Reno TCP, HSTCP and STCP. The

Proposed method has beaten all other TCPs in following

parameters like Round trip time, Congestion window and

Queue size thus ensuring a safe secure downloading of

information than the previous used techniques.

International Journal of communication and computer Technologies, ISSN: 2278-9723

Available at http://www.ijccts.org

 Volume 02 – Issue: 01 Page 54

International Journal of Communication and Computer Technologies www.ijccts.org

Fig.6.Congestion Window (Packets) Vs Time(seconds) for FAQ-

MAST TCP with Reno,HSTCP and STCP

V. CONCLUSION

The innovative congestion control algorithm named

FAQ-MAST TCP (Fast Active Queue Management Stability

Transmission Control Protocol) is aimed for high-speed long-

latency networks. Four major difficulties in FAQ-MAST TCP

are highlighted at both packet and flow levels. The architecture

and characterization of equilibrium and stability properties of

FAQ-MAST TCP are robust. Experimental results of FAQ-

MAST TCP outsmart TCP Reno, HSTCP, and STCP in terms

of throughput, fairness, stability, and responsiveness. FAQ-

MAST TCP aims to rapidly stabilize high-speed long-latency

networks into steady, efficient and fair operating points, in

dynamic sharing environments, and the preliminary results are

produced as output of our project. On proper implementation,

many safe, FAQ-MAST downloads and data transfers can be

carried over a high speed internet network.

VI. FUTURE ENHANCEMENT

The existing real time applications can be transformed to a

large scale basis and can be implemented with ease. On

enhancement of the algorithm, the new algorithm holds the key

for many new frontiers to be explored in case of congestion

control. The congestion control algorithm is currently running

on Linux platform. The Windows platform is the widely used

one. By proper Simulation applications, in Windows we can

implement the same congestion control algorithm for Windows

platform also. The Torrents application which we are currently

using can achieve speeds similar to or better than ―Rapid share

(premium user)‖ application.

International Journal of communication and computer Technologies, ISSN: 2278-9723

Available at http://www.ijccts.org

 Volume 02 – Issue: 01 Page 55

International Journal of Communication and Computer Technologies www.ijccts.org

REFERENCES
1. D. Chiu and R. Jain, ―Analysis of the increase and decrease

algorithms for congestion avoidance in computer networks,‖

Computer Networks, vol. 17, pp. 1–14, 2012

2. David X. Wei and Steven H. Low, ―A model for TCP model

with burstiness effect,‖ Submitted for publication, 2010.

3. Fernando Paganini, John C. Doyle, and Steven H. Low,

―Scalable laws for stable network congestion control,‖ in

Proceedings of Conference on Decision and Control, December

2011, http://www.ee.ucla.edu/˜paganini.

4. W. Feng and S. Vanichpun, ―Enabling compatibility between

TCP Reno and TCP Vegas,‖ IEEE Symposium on Applications

and the Internet (SAINT 2003), January 2010.

5. V. Jacobson, R. Braden, and D. Borman, ―TCP extensions for

High performance,‖ RFC 1323, ftp://ftp.isi.edu/in-notes/

rfc1323.txt, May 2010.

6. Lawrence S. Brakmo and Larry L. Peterson, ―TCP Vegas:

end-to-end congestion avoidance on a global Internet,‖ IEEE

Journal on Selected Areas in Communications, vol. 13, no. 8,

pp. 1465–80, October 2009,

7. A. Kuzmanovic and E. Knightly, ―TCP-LP: a distributed

algorithm for low priority data transfer,‖ in Proc. of IEEE

Infocom, 2008.

8. L. Massoulie and J. Roberts, ―Bandwidth sharing: objectives

and algorithms,‖ IEEE/ACM Transactions on Networking, vol.

10, no. 3, pp. 320–328, June 2008

9. R. Shorten, D. Leith, J. Foy, and R. Kilduff, ―Analysis and

design of congestion control in synchronised communication

networks,‖ in Proc.of 12th Yale Workshop on Adaptive and

Learning Systems, May 2008.

10. Shudong Jin, Liang Guo, Ibrahim Matta, and Azer

Bestavros, ―A spectrum of TCP-friendly window-based

congestion control algorithms,‖IEEE/ACM Transactions on

Networking, vol. 11, no. 3, June 2007.

11. R. Wang, M. Valla, M. Sanadidi, B. Ng, and M. Gerla,

―Using adaptive rate estimation to provide enhanced and robust

transport over heterogeneous networks,‖ in Proc. of IEEE ICNP,

2006.

