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ABSTRACT  

The innovative congestion control algorithm named FAQ-MAST 

TCP (Fast Active Queue Management Stability Transmission 

Control Protocol) is aimed for high-speed long-latency networks. 

Four major difficulties in FAQ-MAST TCP are highlighted at both 

packet and flow levels. The architecture and characterization of 

equilibrium and stability properties of FAQ-MAST TCP are 

discussed. Experimental results are presented comparing the first 

Linux prototype with TCP Reno, HSTCP, and STCP in terms of 

throughput, fairness, stability, and responsiveness. FAQ-MAST 

TCP aims to rapidly stabilize high-speed long-latency networks 

into steady, efficient and fair operating points, in dynamic sharing 

environments, and the preliminary results are produced as output 

of our project. The Proposed architecture is explained with the 

help of an existing real-time example as to explain why FAQ-MAST 

TCP download is chosen rather than FTP download. The Paper is 

concluded with the results of the new congestion control algorithm 

aided with the graphs obtained during its simulation in NS2. 

Keywords – Congestion Control, FAQ-MAST TCP, 

HSTCP, Reno TCP, STCP 
 
I. INTRODUCTION  

Congestion control is a distributed algorithm to share 

network resources among competing users. It is important in 

situations where the availability of resources and the set of 

competing users vary over time unpredictably, yet efficient 

sharing is desired. These constraints, unpredictable supply and 

demand and efficient operation, necessarily lead to feedback 

control as the preferred approach, where traffic sources dy-

namically adapt their rates to congestion in their paths. On the 

Internet, this is performed by the Transmission Control 

Protocol (TCP) in source and destination computers involved in 

data transfers. The congestion control algorithm in the current 

TCP, which we refer to as Reno, was developed in 1988 and 

has gone through several enhancements since. It has performed 

remarkably well and is generally believed to have prevented 

severe congestion as the Internet scaled up by six orders of 

magnitude in size, speed, load, and connectivity, if is also well-

known, however, that as bandwidth-delay product continues to 

grow, TCP Reno will eventually become a performance 

bottleneck itself. The following four difficulties contribute to 

the poor performance of TCP Reno in networks with large 

bandwidth-delay products: 1) at the packet level, linear 

increase by one packet per Round-Trip Time (RTT) is too 

slow, and multiplicative decrease per loss event is too drastic. 

2) At the flow level, maintaining large average congestion 

windows requires an extremely small equilibrium loss 

probability.3)  at the packet level, oscillation is 

unavoidable because TCP uses a binary congestion signal 

(packet loss). 4) At the flow level, the dynamics is unstable, 

leading to severe oscillations that can only be reduced by the 

accurate estimation of packet loss probability and a stable 

design of the How dynamics. 

These difficulties are explained in detail in Section II. 

Here delay-based approach is motivated. Delay-based 

congestion control has been proposed. Its advantage over loss-

based approach is small at low speed, but decisive at high 

speed, as we will argue below. As pointed out in. delay can be 

a poor or untimely predictor of packet loss and therefore using 

a delay-based algorithm to augment the basic AIMD (Additive 

Increase Multiplicative Decrease) algorithm of TCP Reno is the 

wrong approach to address the above difficulties at large 

windows. Instead, a new approach that fully exploits delay as a 

congestion measure, augmented with loss information, is 

needed. FAQ-MAST TCP uses this approach. Using queuing 

delay as the congestion measure has two advantages. 

First, queuing delay can be more accurately estimated 

than loss probability both because packet losses in networks 

with large bandwidth-delay product are rare events (probability 

on the order 10-8 or smaller), and because loss samples provide 

coarser information than) queuing delay samples. Indeed, 

measurements of delay are noisy, just as those of loss 

probability. Each measurement of packet loss (whether a 

packet is lost) provides one bit of information for the filtering 

of noise. Whereas each measurement of queuing delay provides 
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multi-bit information, this makes it easier for the equation-

based implementation to stabilize a network into a steady state 

with a target fairness and high utilization. Second, the dynamics 

of queuing delay seems to have the right scaling with respect to 

network capacity. This helps maintain stability as a network 

scales up in capacity. In Section III, the architecture of the 

proposed system is discussed. 

The architecture is laid to implement the design; Even 

though the discussion is in the context of FAQ-MAST TCP the 

architecture can also serve as a general framework to guide the 

design of other congestion control mechanisms. Not necessarily 

limited to TCP, for high-speed networks. The main components 

in the architecture can be designed separately and upgraded 

asynchronously. Unlike the conventional design, FAQ-MAST 

TCP can use the same window and burstiness control 

algorithms regardless of whether a source is in the normal state 

or the loss recovery state. This leads to a clean separation of 

components in both functionality and code structure. We then 

present an overview of some of the algorithms implemented in 

our current prototype. 

A mathematical model of the window control 

algorithm is presented. In particular, FAQ-MAST TCP does not 

penalize flows with large propagation delays, and it achieves 

weighted proportional fairness. For the special case of single 

bottleneck link with heterogeneous flows, we prove that the 

window control algorithm of FAQ-MAST TCP is globally 

stable, in the absence of feedback delay. Moreover, starting 

from any initial state, a network converges exponentially to a 

unique equilibrium. 

In Section IV, the performance of FAQ-MAST TCP 

is compared with Reno, HSTCP (High-speed TCP, and STCP 

(Scalable TCP), using their default parameters. In these 

experiments, FAQ-MAST TCP achieved the best performance 

under each criterion, while HSTCP and STCP improved 

throughput and responsiveness over Reno at the cost of fairness 

and stability. Section V concludes the paper with scope for 

future study. 

II. PROBLEMS AT LARGE WINDOWS  
A congestion control algorithm can be designed at 

two levels. The flow- level (macroscopic) design aims to 

achieve high utilization, low queuing delay and loss, fairness, 

and stability. The packet - level design implements these (low- 

level goals within the constraints imposed by end-to-end 

control. Historically for TCP Reno, packet-level 

implementation was introduced first. The resulting flow -level 

properties, such as fairness, stability, and the relationship 

between equilibrium window and loss probability, were then 

understood as an afterthought. In contrast, the packet-level 

designs of HSTCP, STCP, and FAQ-MAST TCP are explicitly 

guided by flow-level goals. 

2.1. Packet and flow level modeling  

The congestion avoidance algorithm of TCP Reno 

and its variants have the form of AIMD. The pseudo code for 

window adjustment is: Ack: w ← w+ (1/w), Loss:  w← w-

(1/w) this is a packet-level model, but it induces certain flow-

level properties such as throughput, fairness, and stability. 

These properties can be understood with a flow-level model of 

the AIMD algorithm. The window of size increases by 1 packet 

per RTT and decreases per unit time by xi (t) pi (t). (1/2). 

(4wi(t)/3 ) packets where  xi(t) = wi(t)/Ti(t) packets/sec. Ti(t) is 

the round-trip time and pi(t) is the (delayed) end to end loss 

probability, in period t. Here 4wi (t)/3 is the peak window size 

that gives the ―average‖ window of wi (t). Hence a flow-level 

model of AIMD is: 

w* i (t) = (1/Ti(t))-(2/3).xi(t).pi(t).wi(t)                                     (1) 

Setting wi(t)= 0 in yields the well known 1/√p 

formula for TCP Reno discovered, which relates loss 

probability to window size in equilibrium. 

p*
i  = (3/(2w*

i)
2)                                                                        (2) 

In summary (1) and (2) describe the flow-level 

dynamics and the equilibrium, respectively, for TCP Reno. It 

turns out that different variants of TCP all have the same 

dynamic structure at the flow level.  

By defining ki (wi, Ti) = (1/Ti) & ui(wi , Ti) = 1.5/wi
2. And 

noting that  

wi (t) = k (t). (1 – (pi (t)/ui (t))                                               (3) 

where we have used the shorthand ki(t)= ki(wi(t), Ti(t)) and 

ui(t)= ui(wi(t), Ti(t)). Equation (3) can be used to describe all 

known TCP variants, and different variants differ in their 

choices of the gain function ki and the marginal utility function 

ui, and whether the congestion measure pi is loss probability or 

queuing delay. 

Next, we illustrate the equilibrium and dynamics 

problems of TCP Reno, at both the packet and flow levels, as 

bandwidth-delay product increases. 

2.2. Equilibrium Problem 

The equilibrium problem at the flow level is 

expressed in (2): the end-to-end loss probability must be 

exceedingly small to sustain a large window size, making the 

equilibrium difficult to maintain in practice, as bandwidth-

delay product increases. 

Even though equilibrium is in flow-level notion, this 

problem manifests itself at the packet level, where a source 
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increments its window too slowly and decrements it too 

drastically. When the peak window is 80,000-packct 

(corresponding to an "average" window of 60,000 packets), 

which is necessary to sustain 7.2Gbps using 1,500-byte packets 

with a RTT of l00ms, it takes 40,000 RTTs or almost 70 

minutes, to recover from a single packet loss. The increment 

function for Reno (and for HSTCP) is almost indistinguishable 

from the x axis. Moreover, the gap between the increment and 

decrement functions grows rapidly as wi increases. Since the 

average increment and decrement must be equal in equilibrium, 

the required loss probability can be exceedingly small at large 

wi. This picture is thus simply a visualization of (2). To address 

the difficulties of Reno at large window sizes, HSTCP and 

STCP increase more aggressively and decrease more gently. 

2.3. Dynamic Problems 

The causes of the oscillatory behavior of TCP Reno lie in its 

design at both the packet and flow levels. At the packet level, 

the choice of binary congestion signal necessarily leads to 

oscillation, and the parameter setting in Reno worsens the 

situation as bandwidth-delay product increases. At the flow 

level, the system dynamics given by (I) is unstable at large 

bandwidth-delay products. 
 

III. ARCHITECTURE AND ALGORITHMS  
The congestion control mechanism of TCP into four 

components in Figure 3. These four components are 

functionally independent so that they can be designed 

separately and upgraded asynchronously. In this section, we 

focus on the two parts that we have implemented in the current 

prototype.                             

Data 

Control 

Window 

Control 

Burstiness     

Control 

                            

                  Estimation     

            TCP Protocol Processing 

                
                   Fig 1.  Architecture of FAQ-MAST TCP 

 

The data control component determines which 

packets to transmit, window control determines how many 

packets to transmit, and burstiness control determines when to 

transmit these packets. These decisions are made based on 

information provided by the estimation component. Window 

control regulates packet transmission at the RTT timescale, 

while burstiness control works at a smaller timescale. In the 

following subsections, we provide an overview of window 

control and algorithms implemented in our current prototype. 

3.1. Estimation 

This component provides estimations of various input pa-

rameters to the other three decision-making components. It 

computes two pieces of feedback information for each data 

packet sent. When a positive acknowledgment is received, it 

calculates the RTT for the corresponding data packet and 

updates the average queuing delay and the minimum RTT. 

When a negative acknowledgment (signaled by three duplicate 

acknowledgments or timeout) is received, it generates a loss 

indication for this data packet to the other components. The 

estimation component generates both a multi-bit queueing 

delay sample and a one-bit loss-or-no loss sample for each data 

packet. The queuing delay is smoothed by taking a moving 

average with the weight η(t) := min{3wi(t), 1/4} that depends 

on me window wi(t) at time t as follows. The k-th RTT sample 

Ti (k) updates the average RTT Ŧi (k) according to: 

Ŧi (k+1) = (1 – η (tk) Ŧi (k) + η (tk) Ti (k)                                (4) 

 Where tk is the time at which the k-th RTT sample is 

received. Taking di(k) to be the minimum RTT observed so far 

, the average queuing delay is estimated as qi(k) = Ŧi(k) - di(k). 

The weight η (t) is usually much smaller than the weight (1/8) 

used in TCP Reno. The average RTT Ŧi (k) attempts to track 

the average over one congestion window. During each RTT an 

entire window worth of RTT samples are received if every 

packet is acknowledged. Otherwise, if delayed Ack is used, the 

number of queueing delay samples is reduced so η (t) should be 

adjusted accordingly. 

3.2. Window Control 

The window control component determines 

congestion window based on congestion information — 

queuing delay and packet loss, provided by the estimation 

component. A key decision in our design that departs from 

traditional TCP design is that the same algorithm is used for 

congestion window computation independent of the state of the 

sender. For example, in TCP Reno (without rate halving), 

congestion window is increased by one packet every RTT 

when there is no loss, and increased by one for each duplicate 

ack during loss recovery. In FAQ-MAST TCP, we would like 

to use the same algorithm for window computation regardless 

of the sender. The congestion control mechanism reacts to both 

queuing delay and packet loss. Under normal network 

conditions, FAQ-MAST TCP periodically updates the 

congestion window based on the average RTT and average 

queueing delay provided by the estimation component, 

according to (5): 
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W ← min {2w, (1-γ) w + γ ((base RTT /RTT) w + a (w, 

qdelay)}                                                                             (5) 

where γ € (0,1),base RTT is the minimum RTT observed 

so far, and qdelay is the end-to-end (average) queueing delay. In 

our current implementation, congestion window changes over 

two RTTs: it is updated in one RTT and frozen in the next. The 

update is spread out over the first RTT in a way such that 

congestion window is no more than doubled in each RTT. The 

function a (w, qdelay) is chosen to be a constant at all times. This 

produces linear convergence when the qdelay is zero. 

Alternatively, we can use a constant a only when qdelay is non 

zero and a proportional to window. a (w, qdelay) = aw. In this 

case when qdelay is zero FAQ-MAST performs multiplicative 

increase and grows exponentially at rate a to a neighborhood of 

qdelay >0.  

3.3. Packet- Level Implementation 

It is important to maintain an abstraction as the code 

evolves. This abstraction should describe the high-level 

operations each component performs based on external inputs, 

and can serve as a road map for future TCP implementations as 

well as improvements to the existing implementation. 

Whenever a non-trivial change is required, one should first 

update this abstraction to ensure that the overall packet-level 

code would he built on a sound underlying foundation. Since 

TCP is an event-based protocol, our control actions should be 

triggered by the occurrence of various events. Hence, we need 

to translate our flow-level algorithms into event-based packet-

level algorithms. There are four types of events that FAQ-

MAST TCP reacts to: on the reception of an acknowledgment, 

after the transmission of a packet, at the end of a RTT, and for 

each packet loss. 

For each acknowledgment received, the estimation 

component computes the average queueing delay, and the 

burstiness control component determines whether packets can 

be injected into the network. For each packet transmitted, the 

estimation component records a time-stamp, and the burstiness 

control component updates corresponding data structures for 

book-keeping. At a constant time interval, which we check on 

the arrival of each acknowledgment, window control calculates 

a new window size. At the end of each RTT, burstiness 

reduction calculates the target throughput using the window and 

RTT measurements in the last RTT. Window pacing will then 

schedule to break up a large increment in congestion window 

into smaller increments over time. During loss recovery, 

congestion window should be continually updated based on 

congestion signals from the network. Upon the detection of a 

packet loss event, a sender determines whether to retransmit 

each un-acknowledged packet right away or hold off until a 

more appropriate time. 

Each source I adapt wi (t) periodically according to  

wi(t+1)=γ((diwi(t)/(di+qi(t))+ai(wi(t),qi(t))+(1-γ)wi(t)    (6) 

Where γ € (0, 1), at time t, and ai(wi, qi)is defined by: 

ai (wi, qi) = {aiwi if qi=0,    ai,     otherwise                          (7) 

A key departure in our model from those in the 

literature is that we assume that a source's send rate defined as 

xi (t) =wi (t)/Ti (t), cannot exceed the through put it receives 

.This is justified because of self-clocking: one round-trip time 

after a congestion window is increased, packet transmission 

will be clocked at the same rate as the throughput the flow 

receives. A consequence of this assumption is that the link 

queueing delay vector, p(t), is determined implicitly by die 

instantaneous window size in a static manner: given wi(t)=wi  

for all i, the link queueing delays pl(t) = pl(t)  > 0 for all l are 

given by: 

The equilibrium values of windows w* and delays p* of the 

network defined by Equations (6) & (7) can be characterized as 

follows. Consider the utility maximization problem. 

Max Σ ailogxi s.t. Rx < c                                                        (8) 

and the following dual problem 

min  Σ clpl - Σailog ΣRlipl.                                                                   (9)  

3.4. Theorem I 

 Suppose R has full row rank. The unique equilibrium 

point (w*,p*) of the network is defined by (6)—(8) exists and is 

such that x* = (xi
* = wi/(di+qi

*),¥i) is the unique maximiser of 

(9) and p*  is the unique minimiser of (10).This implies in 

particular that the equilibrium rate x * is ai – weighted 

proportionally fair. 

 Theorem I implies that FAQ-MAST TCP has the 

same equilibrium properties as TCP Vegas. It s throughput is 

given by 

xi = ai / qi                                                                                                       (10) 

 In particular it does not penalize sources with large 

propogation delays di the relation (11) also implies that in 

equilibrium source I maintains ai packets in the buffers along its 

path. Hence the total amount off buffering in the network must 

be at least Σiai packets in order to reach the equilibrium. Global 

stability in a general network in the presence of feedback delay 

is an open problem. State-of-the-art results either prove global 

stability while ignoring feedback delay, or local stability in the 

presence of feedback delay. Our stability result is restricted to a 

single link in the absence of delay. 
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3.5. Theorem 2 

 Suppose there is a single link with capacity c. Then 

the network defined by (6)-(8) is globally stable, and converges 

geometrically to the unique equilibrium (w*, p*).The basic idea 

of the proof is to show that the iteration from w (t) to w (t + 1) 

defined by (6)--(8) is a CONTRACTION mapping. Hence w (t) 

converges geometrically to the unique equilibrium. Some 

properties follow from the proof of Theorem 2. 

1) Starting from an initial point (w (0), p (0)) the link is fully 

utilized, i.e... Equality holds in (8), after a finite time. 

2) The queue length is lower and upper bounded after a finite 

amount of time. 

IV. SIMULATION RESULTS 

 
Some preliminary experiments are conducted on 

dummy net test bed kernel comparing the performance of 

various new TCP algorithms as well as the Linux TCP 

implementation. It is important to evaluate them not only in 

static environments, but also dynamic environments where 

flows come and go; and not only in terms of end-to-end 

throughput, but also queue behavior in the network. In this 

study, we compare performance among TCP connections of the 

same protocol sharing a single bottleneck link. Our test bed 

router ran dummy net under Free-BSD. We configured dummy 

net to create paths or pipes of different delays, 50, 100, 150, 

and 200ms, using different destination port numbers on the 

receiving machine. We then created another pipe to emulate a 

bottleneck capacity of 800 Mbps and a buffer size of 2,000 

packets, shared by all the delay pipes. Due to our need to 

emulate a high-speed bottleneck capacity, we increased the 

scheduling granularity of dummy net events. We recompiled 

the FreeBSD kernel so the task scheduler ran every 1ms. We 

also increased the size of the IP layer interrupt queue to 3000 to 

accommodate large bursts of packets. 

We instrumented both the sender and the dummy net 

router to capture relevant information for protocol evaluation. 

For each connection on the sending machine, the kernel 

monitor captured the congestion window, the observed base 

RTT, and the observed queueing delay. On the dummy net 

router, the kernel monitor captured the throughput at the 

dummy net bottleneck, the number of lost packets, and the 

average queue size every two seconds. We retrieved the 

measurement data after the completion of each experiment in 

order to avoid disk I/O that may have interfered with the 

experiment itself. 

We tested four TCP implementations: FAQ-MAST, 

HSTCP, STCP, and Reno (Linux implementation). The FAQ-

MAST TCP is based on Linux 2.4.20 kernel, while the rest of 

the TCP protocols are based on Linux 2.4.19 kernel. We ran 

tests and did not observe any appreciable difference between 

the two plain Linux kernels, and the TCP source codes of the 

two kernels are nearly identical. Linux TCP implementation 

includes all of the latest RFCs such as New Reno, SACK, D-

SACK, and TCP high performance extensions. 

4.1. Overall Evaluation 

We use the output of iperf for our quantitative 

evaluation. Each iperf session in our experiments produced 

five-second averages of its throughput. This is the data rate 

(i.e., good put) applications such as iperf receives, and is 

slightly less than the bottleneck bandwidth due to IP and 

Ethernet packet headers. 

Let xi (k) be the average throughput of flow i in the 

five-second period k. Most tests involved dynamic scenarios 

where flows joined and departed. For the definitions below, 

suppose the composition of flows changes in period k=1…..m, 

and changes again over period k = m+1 so that [1, m] is the 

maximum-length interval over which the- same equilibrium 

holds. Suppose there are n active flows in this interval, indexed 

by i=1……, n. 

Let 

                           (11) 

be the average throughput of flows i over this interval. We now 

define our performance metrics for this interval [1,m] using 

these throughput measurements. 

1) Throughput: The average aggregate throughput for the 

interval [l, m] is defined as: 

                                               (12) 

2) Intra-protocol fairness: Jain's fairness index for the interval 

[1,m] is defined as:  

                              (13)             

F € (0, 1) and F = 1 is ideal (equal sharing). 
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3) Stability: The stability index of flow i is the sample standard 

deviation normalized by the average throughput: 

            (14) 

The smaller the stability index, the less oscillation a source 

experiences. The stability index for interval [0, m] is the 

average over the n active sources: 

                               (15) 

4)   Responsiveness:   The   responsiveness   index   measures 

the speed of convergence when the network equilibrium 

changes at k=1, i.e. when flows join or depart. Let xi (k) be the 

running average by period k < m: 

    

               (16) 

For each TCP protocol, we obtain one set of 

computed values for each evaluation criterion for all of our 

experiments. We plot the CDF (cumulative distribution 

function) of each set of values. 

4.2. Real-time application presently using FAQ-MAST 

TCP download 

 Torrent is a peer-to-peer file sharing protocol used for 

distributing large amounts of data. Bit Torrent is one of the 

most common protocols for transferring large files, and by 

some estimates it accounts for about 35% of all traffic on the 

entire Internet. The protocol works initially when a file provider 

makes his file (or group of files) available to the network. This 

is called a seed and allows others, named peers, to connect and 

download the file. Each peer who downloads a part of the data 

makes it available to other peers to download. After the file is 

successfully downloaded by a peer, many continue to make the 

data available, becoming additional seeds. This distributed 

nature of Bit Torrent leads to a viral spreading of a file 

throughout peers. As more seeds get added, the likelihood of a 

successful connection increases exponentially. Relative to 

standard Internet hosting, this reduces the original 

distributor's hardware and bandwidth resource costs. It is now 

maintained by Cohen's company Bit Torrent, Inc. there are 

numerous Bit Torrent clients available for a variety 

of computing platforms. According to isoHunt, the total 

amount of shared content is currently more than 1.1 terabytes. 

A peer is any computer running an instance of a client. To 

share a file or group of files, a peer first creates a small file 

called a "torrent" (e.g. MyFile.torrent). This file 

contains metadata about the files to be shared and about 

the tracker, the computer that coordinates the file distribution. 

Peers that want to download the file must first obtain a torrent 

file for it, and connect to the specified tracker, which tells them 

from which other peers to download the pieces of the file. 

Though both ultimately transfer files over a network, 

a Bit Torrent download differs from a classic full-

file HTTP request in several fundamental ways: Bit Torrent 

makes many small data requests over different TCP sockets, 

while web browsers typically make a single HTTP 

GET request over a single FTP socket. Bit Torrent downloads 

in a random or in a rarest-first approach that ensures high 

availability, while HTTP downloads in a sequential manner. 

Taken together, these differences allow Bit Torrent to 

achieve much lower cost to the content provider, much higher 

redundancy, and much greater resistance to abuse or to "flash 

crowds" than a regular HTTP server. However, this protection 

comes at a cost: downloads can take time to rise to full speed 

because it may take time for enough peer connections to be 

established, and it takes time for a node to receive sufficient 

data to become an effective up loader. As such, a typical Bit 

Torrent download will gradually rise to very high speeds, and 

then slowly fall back down toward the end of the download. 

This contrasts with an HTTP server that, while more vulnerable 

to overload and abuse, rises to full speed very quickly and 

maintains this speed throughout. 

http://en.wikipedia.org/wiki/Peer-to-peer
http://en.wikipedia.org/wiki/File_sharing
http://en.wikipedia.org/wiki/Communications_protocol
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Exponential_function
http://en.wikipedia.org/wiki/Internet_hosting_service
http://en.wikipedia.org/wiki/Hardware
http://en.wikipedia.org/wiki/Bandwidth_(computing)
http://en.wikipedia.org/wiki/BitTorrent,_Inc.
http://en.wikipedia.org/wiki/BitTorrent_client
http://en.wikipedia.org/wiki/Computing_platform
http://en.wikipedia.org/wiki/IsoHunt
http://en.wikipedia.org/wiki/Petabytes
http://en.wikipedia.org/wiki/Metadata
http://en.wikipedia.org/wiki/BitTorrent_tracker
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/HTTP#request_methods
http://en.wikipedia.org/wiki/HTTP#request_methods
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
http://en.wikipedia.org/wiki/Slashdot_effect
http://en.wikipedia.org/wiki/Slashdot_effect
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
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Fig.2.Rate (Packets/seconds) Vs Time(seconds)  

Fig.2. shows the Rate in Packets/seconds versus Time 

in seconds of the proposed method. Source 1 (FAQ-MAST 

TCP) leads other TCPs. 

 

Fig.3.Queue Size(Packets) Vs Time(seconds)  

In Fig.3., Forward Queue shows increased 

performance than the backward queue in the proposed method 

 

Fig.4.Congestion Window (Packets) Vs Time(seconds)  

Fig.4 shows the performance of Congestion window 

in Packets w.r.t time in seconds which outsmarts the 

performance of Reno TCP and STCP. 

 

Fig.5.RTT(Seconds) Vs Time(seconds)  

 Figure 5 shows the value of Round Trip Time in 

seconds w.r.t Time in seconds for FAQ-MAST TCP and Reno 

TCP. FAQ-MAST TCP outsmarts the performance of Reno 

TCP in former Graph. Figure 6 shows the Performance of 

Congestion window in packets w.r.t Time in seconds for the 

proposed FAQ-MAST, Reno TCP, HSTCP and STCP. The 

Proposed method has beaten all other TCPs in following 

parameters like Round trip time, Congestion window and 

Queue size thus ensuring a safe secure downloading of 

information than the previous used techniques. 
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Fig.6.Congestion Window (Packets) Vs Time(seconds) for FAQ-

MAST TCP with Reno,HSTCP and STCP 

 

V. CONCLUSION 
 

The innovative congestion control algorithm named 

FAQ-MAST TCP (Fast Active Queue Management Stability 

Transmission Control Protocol) is aimed for high-speed long-

latency networks. Four major difficulties in FAQ-MAST TCP 

are highlighted at both packet and flow levels. The architecture 

and characterization of equilibrium and stability properties of 

FAQ-MAST TCP are robust. Experimental results of FAQ-

MAST TCP outsmart TCP Reno, HSTCP, and STCP in terms 

of throughput, fairness, stability, and responsiveness. FAQ-

MAST TCP aims to rapidly stabilize high-speed long-latency 

networks into steady, efficient and fair operating points, in 

dynamic sharing environments, and the preliminary results are 

produced as output of our project. On proper implementation, 

many safe, FAQ-MAST downloads and data transfers can be 

carried over a high speed internet network. 

VI. FUTURE ENHANCEMENT 

 

The existing real time applications can be transformed to a 

large scale basis and can be implemented with ease. On 

enhancement of the algorithm, the new algorithm holds the key 

for many new frontiers to be explored in case of congestion 

control. The congestion control algorithm is currently running 

on Linux platform. The Windows platform is the widely used 

one. By proper Simulation applications, in Windows we can 

implement the same congestion control algorithm for Windows 

platform also. The Torrents application which we are currently 

using can achieve speeds similar to or better than ―Rapid share 

(premium user)‖ application.
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