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ABSTRACT 
Ensuring the correctness, safety, and reliability of interacting smart contracts across decentralized 
blockchain platforms remains a persistent challenge due to composability risks, non-deterministic 
execution environments, and implicit inter-contract dependencies. This paper proposes a hybrid 
verification framework that integrates model checking with runtime verification to validate 
communication and behavioral properties in decentralized smart contract ecosystems. The 
framework employs Linear Temporal Logic (LTL) to specify safety and liveness constraints across 
token exchange, oracle-based communication, and governance-related contract interactions. 
Property-based testing and symbolic execution are incorporated to capture hidden state 
transitions, detect inconsistencies, and validate edge-case behaviors. The proposed methodology is 
implemented and evaluated using Ethereum smart contracts conforming to ERC-20 and ERC-721 
token standards. Experimental analyses demonstrate the framework’s effectiveness in identifying 
misbehaviors such as inconsistent states, reentrancy-triggered state violations, improper oracle 
updates, and potential contract deadlocks. Results also show that combining formal verification 
with runtime monitoring significantly enhances behavioral robustness and reduces vulnerability 
exposure during decentralized execution. The proposed hybrid verification model offers a scalable 
and extensible approach for improving trustworthiness and correctness in multi-contract blockchain 
applications. 
 
Keywords: Model checking, Runtime verification, Smart contract interactions, Temporal logic, 
Ethereum, Token standards, Formal methods, LTL properties 

 
1. INTRODUCTION 

Smart contracts deployed on decentralized 
blockchain platforms enable automated, 

immutable, and trustless execution of user-
defined logic. As blockchain ecosystems 

increasingly embrace composability, smart 
contracts frequently interact with external 

modules, oracle services, and token standards. 

While these interactions enhance functionality, 
they also introduce behavioral uncertainties and 

complex execution flows that are difficult to 
rigorously validate. Ensuring correctness across 

such interactions is essential to maintaining the 

reliability and security of decentralized 
applications. 

Inter-contract communication often involves 
asynchronous calls, event-based triggers, and 

data dependencies that may behave 
unpredictably under varying network and state 

conditions. These behaviors increase the risk of 

misconfigurations, inconsistent states, 
reentrancy-triggered errors, and transaction-

ordering issues. Traditional unit testing or ad hoc 
auditing approaches are insufficient to capture 

the full spectrum of temporal, state, and 
communication-dependent behaviors inherent to 

decentralized smart contract ecosystems. 
Formal methods such as model checking and 

symbolic execution have been widely explored 

for single-contract verification. However, 
validating multi-contract interaction correctness 

remains underexplored due to state-space 
explosion, dynamic execution paths, and the 

presence of off-chain oracle dependencies. A 

hybrid verification approach that integrates 
model checking with runtime monitoring can 

provide more comprehensive coverage of 
execution behaviors across interacting contracts. 

This paper proposes such a hybrid verification 
framework for Ethereum-based smart contract 

systems. The framework employs Linear 

Temporal Logic (LTL) for specifying formal 
behavioral properties, coupled with runtime 

verification to detect deviations, abnormal 
transitions, and deadlocks during execution. 

Through experimental evaluation using ERC-20 

and oracle-based contracts, the study 
demonstrates the framework’s effectiveness in 
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improving the reliability and security of 

decentralized smart contract interactions. 
 
2. LITERATURE REVIEW 

Formal verification in blockchain systems has 
gained significant attention due to high-value 

assets and mission-critical operations. Early 
works explored symbolic execution tools such as 

Oyente and Mythril to detect contract-level 

vulnerabilities, focusing mostly on reentrancy, 
arithmetic bugs, and access-control violations 

[1], [2]. Model checking approaches, including 
SMT-solvers and finite-state verification, further 

improved coverage by validating invariants and 

liveness properties in isolated contract 
environments [3]. These tools, however, provide 

limited support for multi-contract behavioral 
correctness. 

Recent studies have emphasized the importance 
of verifying compositional behaviors and cross-

contract call sequences. Bhargavan et al. 

demonstrated the need for verifying interactions 
among token standards and library contracts 

using formal specifications [4]. Multi-agent 
model checking frameworks such as VerX and 

CertoraProver introduced rule-based property 

validation for inter-contract state transitions [5]. 
Although effective, these methods face scalability 

limitations due to the exponential growth of 
interaction states. 

Runtime verification has emerged as a 
complementary solution, enabling detection of 

execution-time anomalies that static model 

checking may overlook. Tools such as EthRacer 
and ContractLarva provided temporal monitoring 

for event-level violations in Ethereum 
transactions [6], [7]. Recent works have 

integrated property-based testing with temporal 

logic to capture runtime misbehavior in oracle-
triggered interactions [8]. However, few studies 

combine model checking and runtime verification 
into a unified framework for holistic behavioral 

consistency across decentralized smart contract 

ecosystems. 
 
3. METHODOLOGY 
3.1 Hybrid Verification Architecture 

The proposed framework integrates formal 

model checking with runtime verification to 
achieve comprehensive behavioral validation of 

smart contract interactions. First, contract 

interaction flows are abstracted into finite-state 
models representing call graphs, event triggers, 

and oracle dependencies. These models are 
expressed using LTL, specifying safety conditions 

such as state consistency and liveness conditions 

such as guaranteed event progression. Model 

checking is performed using the SPIN and 

NuSMV engines to exhaustively explore possible 
execution paths, detect violations, and validate 

state transitions. Properties that cannot be fully 
validated statically are delegated to the runtime 

verification module, which instruments contracts 

with monitoring hooks through Solidity events 
and off-chain watchers. This hybrid architecture 

ensures that both static and dynamic behaviors 
are validated with high coverage. 

 
3.2 LTL Property Specification and Interaction 
Modeling 

Interaction properties among token contracts, 

oracle systems, and auxiliary modules are 
formalized using LTL operators such as □ 

(always), ◇ (eventually), and → (implication). 

Examples include ensuring that every token 
transfer request either completes or reverts 

cleanly and verifying that oracle update 

sequences do not introduce stale states. The 
interaction model captures multi-step execution 

flows such as chained calls and callback 
sequences Figure 1. These properties are 

translated into Büchi automata for model 
checking, enabling detection of race conditions, 

deadlocks, and temporal inconsistencies across 

parallel transactions. 

 
Figure 1.LTL Property Specification and 

Interaction Modeling in Blockchain Smart 
Contracts 

 
3.3 Runtime Monitoring, Testing, and 
Validation 

Runtime verification is implemented by 
instrumenting smart contracts using event-based 

observers, property-based testing tools such as 
Echidna, and symbolic execution engines. The 

runtime module continuously monitors contract 

behaviors, capturing anomalies such as 
inconsistent event emissions, unexpected 

reentrancy patterns, and invalid oracle states. 
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Property-based testing generates a wide range 

of interaction sequences and stress-test 
conditions to uncover rare execution paths that 

static verification may overlook. Violations 
detected at runtime are logged, classified, and 

fed back into the model-checking module to 

refine the formal models and update property 
specifications. 

 
4. RESULTS AND DISCUSSION 
4.1 Detection of Interaction-Level Violations 

Model checking on the constructed LTL models 

identified multiple interaction-level misbehaviors 
including inconsistent ERC-20 transfer states, 

delayed oracle updates, and potential execution-
ordering conflicts. The verification engine 

revealed that certain chained calls could lead to 

hidden deadlocks when callbacks were invoked 
under specific gas constraints. These findings 

demonstrate the importance of verifying inter-
contract communication rather than focusing 

solely on single-contract correctness. 
 
4.2 Runtime Identification of Hidden 
Anomalies 

Runtime monitoring detected anomalies not 
captured during static verification, such as rare 

state mismatches resulting from unexpected 
reentrancy interactions triggered during token 

transfers. Property-based testing uncovered 

additional inconsistencies related to improperly 
synchronized oracle data, particularly under rapid 

update sequences. These runtime observations 
confirm that dynamic conditions can expose 

vulnerabilities invisible in static models. 

 
4.3 Comparative Performance of Hybrid 
Verification 

The hybrid approach demonstrated improved 
detection accuracy compared to standalone 

verification methods. Model checking provided 

guaranteed property validation for deterministic 
states, while runtime testing captured edge-case 

behaviors arising from network latency, event 
ordering, and concurrent transactions. Combined 

verification reduced false positives, improved 
state coverage, and enabled automated 

refinement of LTL properties based on executed 

behaviors. 
 
4.4 Impact on Smart Contract Reliability and 
Security 

Integrating both verification paradigms resulted 

in a significant improvement in contract reliability 

Figure 2. The framework successfully prevented 
inconsistent token states, ensured valid oracle 

updates, and reduced execution ambiguity 
during inter-contract interactions. The hybrid 

model provided a scalable and extensible 

verification strategy adaptable to future 
decentralized applications requiring 

composability, multi-agent coordination, and 
cross-chain interoperability. 

 

 
Figure 2.Comparative Performance of 

Verification Approaches 
 
5. CONCLUSION 

This study presents a hybrid verification 

framework that combines model checking with 
runtime verification to ensure correctness, 

robustness, and reliability in decentralized smart 

contract interactions. By leveraging LTL-based 
behavior modeling, property-based testing, and 

event-driven runtime monitoring, the proposed 
framework effectively captures both static and 

dynamic misbehaviors across multi-contract 

ecosystems. Experimental evaluations using 
Ethereum token and oracle-based contracts 

demonstrate significant improvements in 
detecting inconsistent states, deadlocks, and 

runtime anomalies. The results highlight the 
necessity of integrating complementary 

verification approaches to address the complexity 

of decentralized, composable blockchain 
applications. This hybrid model offers an 

extensible foundation for future research on 
cross-chain verification, scalable formal analysis, 

and autonomous contract debugging tools for 

next-generation decentralized systems. 
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