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Abstract: For many applications from the areas of 

cryptography and coding, finite   field    multiplication is   the 

most resource and  time  consuming  operation. In this paper, 

optimized high performance parallel GF(2
233

) multipliers for 

an FPGA realization were designed and the time and area 

complexities were analyzed. One of the multipliers uses a 

new hybrid structure to implement the Karatsuba algorithm. 

For increasing performance, we  make  excessive  use  of  

pipelining and efficient control techniques and use a  modern 

state-of-the-art FPGA   technology.   As  a  result  we have,  

to    our knowledge, the  first   hardware    realization    of sub 

quadratic arithmetic and currently the fastest and most 

efficient implementation of 233 bit finite field multipliers. 

 

 

 1. INTRODUCTION 

 

The arithmetic operations in finite fields are mainly 

used  in   cryptography  and  error    control coding. 

Addition    and   multiplication   are  the  two basic 

operations   in  the  finite  field GF(2
m
).Addition in  

GF(2
m
)  is easily  realized  using m two-input XOR 

gates while multiplication is costly in terms of gate 

count and  time delay.  The  other operations of the 

finite  fields, such as exponentiation,   division and 

inversion  can  be  performed   by   repeated  multi- 

plications.As a result there is a need to have  a fast 

multiplication  architecture with low  complexities.  

The  hardware/software implementation efficiency  

of finite  field  arithmetic is measured  in  terms of  

the  associated  space  and  time  complexities. The  

space complexity is defined as the number of XOR 

and  AND gates needed for the implementation  of  

the circuit,whereas the time complexity is the total 

gate  delay  of  the  circuit.  The   space  and   time  

 

complexities of a multiplier heavily depend on 

how  the field elements are represented. An 

element of GF( 2
m 

) is usually represented with 

respect to  one of the three popular bases: 

Polynomial (canonical or standard) basis(PB), 

dual basis (DB), and normal basis (NB). 

 

Especially for the area of cryptography where the 

extension of the finite field GF(2
m
) is fairly large, 

say m > 160, the selection of the multiplication 

algorithm has a major impact on the overall system 

performance. The selection of the finite field is 

based on the FlPS 186-2 standard concerning with 

the digital signature algorithms and proposed by 

NIST. This standard suggests 5 binary fields, 

mainly the extension degrees 163,233, 283, 409, 

and 573, which are all prime extensions. We have 

selected GF(2
233

) to satisfy the security 

requirements in elliptic curve cryptography for the 

next years, but our results can be adapted to finite 

fields with other prime extensions as well. 

 

For cryptography, the requirements with respect to 

performance and security may change depending on 

the application. For this reason we use FPGAs as 

target technology in order to avoid the flexibility 

lacking in ASIC designs. It turns out that many opti- 

mizations  of field multipliers proposed for ASIC  

design do not hold for FPGA. The main differences 

are 

 

 Influence of routing on the FPGA 

      performance. 

 

 

 4-input lookup table technology  

      instead of 2-input logic gates. 
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 Treatment of high-fanout nets on     

FPGAs. 

So we decided to create completely new 

FPGA optimized designs for the 

multipliers. 

 

The paper is organized as follows. In the next 

section we give an overview over related work. 

Section 3 gives a short introduction into the theory 

of operation of the classical, Karatsuba and 

Massey-Omura multipliers. The architecture and 

FPGA implementation of these multipliers is 

described in detail in Section 4. The performance 

results and a comparison is given in Section 5.  

 

2. RELATED WORK 
 

Several works concern the comparison of different 

hardware based multiplier architectures in the 

binary finite fields. The authors of [3] have 

compared three known serial multipliers, namely 

Berlekamp, Massey-Omura. and a polynomial 

basis multiplier. And    implemented them for a 

small finite field GF(2
8
) in VLSI..[4] considers 

VLSI implementation of parallel multipliers for a 

class of finite fields GF(2
m
) with extension degrees 

m = 8, 16,24, and 32.which are not prime extension 

degrees and are believed to have security 

weaknesses. [6] considers different parallel 

multipliers in GF(2
4
) which is suitable for coding 

applications. This work also considers hardware 

optimization techniques to improve the 

performance of multipliers and make some 

estimates which hold only for small finite fields.[7] 

gives a detailed comparison of different VLSI 

implementations of parallel multipliers in G F (2
4
 

).Indeed all of the above works (except [4] ) 

correspond to small finite fields and the results can 

not be easily extended to larger fields.  

 

With the development of new FPGA families with  

large  gate counts, however, it is possible to realize 

parallel    finite  field  multipliers  on a  single chip               

which performs the total   multiplication operation  

in a few clock cycles. So it become necessary to 

 . 

 

have a performance analysis of the multipliers for large field 

extensions (with m>160)to select the best multiplier for a 

certain application.  

 

 

 

 

3. MULTIPLICATION IN THE 

BINARY FINITE FIELDS 
 

There are several algorithms to multiply two finite 

field elements and each of them has its benefits 

depending on the finite field size, the 

implementation type (hardware or software), and 

the time and area requirements. One of the main 

differences between these algorithms is the finite 

field representation basis. In this section we give a 

brief introduction of different hardware based finite 

field multipliers in GF(2
m
) along with their space 

and time complexities. When the Hamming weight 

of the irreducible polynomial plays a significant 

role, we assume the existence of an irreducible 

trinomial of degree n when considering the 

multiplication in GF(2
m
).This is a reasonable 

assumption since our special finite field is GF(2
233

), 

and the polynomial x
233

 +x
74

 + 1 is irreducible. On 

the other hand it is conjectured that a trinomial of 

degree m exists for a large amount of values n. 

Multipliers will be categorized depending on the 

finite field basis. 

 

 

3.1. Normal Basis Multipliers 
 

An element a in GF(2
m
) is called a normal element, 

when the elements of the set  

Γ= {a
2^ i

|0<=i< m) are linearly independent. In this 

case, the set Γis called a normal basis. One great 

advantage of the normal bases is that squaring in 

this basis consists of only a cyclic shift (which 

requires no logic elements and can he done in 

nearly zero time). There are two types of normal 

bases for which there exist effective multiplication 
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methods, namely optimal normal bases of type I and 

II. 

It is well-known that there always exists a normal 

basis in the field GF (2
m
) over  GF(2)  for all  

positive integers m .By finding an element β Є 

GF(2
m
)such that 

  

           {β,β
2
,------,β

2m-1
} 

 

is a basis of GF(2
m

) over GF(2), any 

element A Є GF(2
m
)   can be represented 

as 

 

        m-1 

 A = ∑ αiβ
2^i   

= α0β+α1β
2
+----+α m-1β

2m-1   
, (1)

  
 

        i=0 

 

Where α
i
 Є GF(2), 0 ≤ i≤ m-1, is the ith coordinate 

of A with respect to the NB. In short, the normal 

basis representation of A will be written as 

 

A= (α0, α1, ----, αm-1). 

 

In vector notation, however, (1) can be written as 

          

 A  = α × β
T
 = β × α

T
 , 

 

Where α =[α0, α1,….,αm-1], β= [β,β
2
, ….β

2m-1
], 

and T denotes vector transposition. 

     The main advantage of the NB representation is 

that an element A can be easily squared by   

applying right cyclic shift of its coordinates, since         

 

                A
2
= (αm-1, α0,----- ,αm-2 ) = 

                 αm-1 β +α0β
2
+------αm-2 β

2m-1
. 

 

3.1.1.Massey-Omura Parallel Multiplier 

 

The Massey-Omura multiplier is one of the most 

famous multipliers that work in the normal basis 

representation. It consists of similar blocks which 

can work in parallel to generate output bits 

simultaneously.  One  great  advantage  of       this      

multiplier  is  its  flexibility  as  a     serial -parallel 

multiplier.  This means  that  the designer  has  the 

ability   to  select  an  arbitrary  number  of similar 

blocks   to   achieve  different   numbers  of output 

bits   in  one  clock cycle, depending  on  the given  

area  constraints.  For  the  case of optimal normal 

bases in GF(2
m
) one  requires  (2m-2)D      2-input  

XOR  and m D 2-input XOR gales, where D is the  

number of output bits per clock cycle. The 

minimum combinatorial propagation delay is TAND 

+ [log2n]TXOR. 

 

Let A and B be two elements of GF(2
m
) and 

represented with respect to the NB as  

       m-1 

A = ∑   αiβ
2^i

     and 

      i=0 

 

      m-1 

B = ∑   bj β
2^i

 , 

      j=0 

respectively. Let C denote their product as 

 

C=AB= (α×β
T 

)×(β×b
T
)=α ×М×b

T
,     (4) 

 

Where the multiplication matrix M is 

defined by 

 

M = β
T
 × β = [β

2^i+2^j
]   = 

 

β20+20        β20+21      ……   β20+2m-1 

β21+20        β 21+21     …….  β21+2m-1 

   .                       .                          . 

   .                       .                          . 

   .                       .                          . 

β2m-1+20    β2m-1+21  ……   2m-1+2m-1β   

                                                                           (5) 

               

If all entries of M are written with respect to the 

NB, then the following is obtained 

 

M=M0β+M1β
2
+-----+Mm-1 β

2m-1
,    (6) 

 

where Mis are m x m matrices whose entries belong 

to GF(2). By substituting (6) into (4), the 

coordinates of C are found as follows: 
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           ci = α ×Мi×b
T
 ,                  0 ≤ i ≤ m-1, 

               = α
 (i)

 ×М0×b
(i)T

,             0 ≤ I ≤m-1,       (7) 

 

where   α
(i)

 = [ αi, αi+1,……αi-1] 

 and      b(i) = [bi, bi+1,…..,bi-1]   

             

                                                                                                               

 

are,respectively, the i-fold left cyclic shift of a and 

b . It is not difficult to verify that the number of 1s 

in each Mi, 0 <= i <= m – 1, is the same, which is 

here after denoted as CN. Since these nonzero 

entries of Mi determine the gate count of the 

normal basis multiplier, CN is referred to as the 

complexity of the NB . 

 

The coordinate ci in (7) can be written as modulo 2 

sum of exactly CN terms. Each of these terms is a 

modulo 2 product of exactly two coordinates (one 

of A and B each). Thus, the generation of ci 

requires CN multiplications and C N - 1 additions 

over GF(2). In hardware, this corresponds to CN 

AND gates and  (CN – 1) XOR gates, assuming that 

all gates have two inputs. If these XOR gates are 

arranged in the binary tree form, then the total gate 

delay to generate cis TA + [log2 CN d]TX, where TA 

and TX are the delays of one AND gate and one 

XOR gate, respectively. For parallel generation of 

all cis, i = 0, 1,------, m- 1, one needs mCN AND 

and m(CN – 1) XOR gates. Also, one can reduce 

the number of AND gates to m
2
 by reusing 

multiplication terms over GF(2). Thus, to reduce 

the number of XOR gates, we have to choose a 

normal basis such that CN is minimum. It was 

proven that CN ≥2m - 1.If CN =2m - 1, then the NB 

is called an optimal normal basis (type-I or type-

II). 

 

 

3.2. Polynomial Basis Multipliers 

 

In this basis, each element is represented as a linear 

combination of different powers of a root of an 

irreducible polynomial. Indeed multiplication in 

this basis consists of a polynomial multiplication 

followed by a modular reduction. There are 

different possibili- ties to multiply two elements 

in this basis like the Mastrovito, the classical, and 

the Karatsuba multipliers. Since there is only 

small difference in time and space  complexities 

of the Mastrovito and the classical multipliers we 

select the classical multiplier because of its 

regular structure and the possibility of pipelining 

which is difficult to apply to the Mastrovito 

multiplier.. 

 

 

 

3.2.1 Classical Multiplier 

 

The most straight forward method to perform finite 

field multiplication is to multiply the polynomials 

and then reduce the result modulo an irreducible 

polynomial to achieve the final result. The school 

method polynomial multiplication requires n2 AND 

gates and (n - 1)
2
 XOR gates (2-input each). The 

combinatorial propagation delay across a school 

method multiplier is T =TAND + [log2 n]TXOR. 

Reducing modulo the polynomial f (x) can be done 

using ( r - l)(n - 1) two input XOR gates, where T 

and n are the Hamming weight and the degree of 

the polynomial f ( x ) , respectively. 

 

 

3.2.2.Karatsuba Multiplier 

 

An approach to reduce the number of gates in the 

polynomial basis multipliers is the Karatsuba 

method. In this method the number of 

multiplications is reduced but at the cost of 

increasing the number of additions and  the total 

propagation delay. This method decreases the total 

number of gates from O (n
2
) to the O (n

1.59
), which 

is very effective when the polynomials become 

large. To achieve a tradeoff between the area and 

propagation delay which is long in the Karatsuba 

multipliers, we have used a hybrid structure by 

using the Karatsuba multiplication formulas(see 

[l0]) for the polynomials of degree 1 and 2 in a 

hierarchical manner above school method 
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multipliers of degree 39. This structure requires 

28800 AND and 31183 XOR gates, and a total 

propagation delay of TAND + l4TXOR.. The costs for a 

pure Karatsuba multiplier are 6561 AND, 37320 

XOR, and TAND + 26TXOR and for a school method 

multiplier are 54289 AND, 53824 XOR,           and 

TAND + 8 T X O R . 

 

Let the field GF(2
m
) be constructed  

using the irreducible polynomial P(x) of degree 

m=rn,with r=2
k
,k an integer. Let A,B be two 

elements in GF(2
m
). Both elements can be 

represented in the polynomial basis as, 

       

       m-1            m-1          m/2-1 

A = ∑   αix
i    

= ∑   αix
i
 + ∑ αix

i
 

      i=0              i=m/2        i=0      

 

 

          m/2-1                 m/2-1 

= x
m/2 ∑   αi+m/2x

i + ∑   αix
i
  = x

m/2 
A

H
+A

L
 

          i=0                      i=0 

and 

 

       m-1              m-1             m/2-1 

B = ∑  bix
i   =  ∑   bix

i   + ∑  bix
i
 

       i=0               i=m/2           i=0 

 

            m/2-1                   m/2-1 

  =x
m/2 ∑    bi+m/2x

i
 + ∑  bix

i
  = x

m/2 
B

H
+B

L 
             i=0                      i=0 

 

Then, using last two equations, the polynomial 

product is given as 

 

C=x
m 

A
H 

B
H
+(A

H 
B

L
+A

L 
B

H
) x

(m/2) 
+ A

L 
B

L
.   (3) 

 

 

Karatsuba algorithm is based on the idea that the 

product of last equation can be equivalently written 

as 

 

C =  x
m

 A
H
 B

H 
+ A

L 
B

L
 + 

          (A
H
 B

H
 + A

L
 B

L
 + (A

H
 + A

L
)(B

L
+B

H
)) x

m/2
 

      =  x
m

C
H
+C

L
.                                           (4) 

 

Let us define  

 

               MA     := AH+AL; 

               MB     := BL+BH; 

                M    := MAMB;                           (5) 

 

Using equation (4),and taking into account that 

the polynomial product C has at most  2m-1 

coordinates, we can  classify it coordinates  as 

           

               C
H
   =   [c2m-2, c2m-3, ----, cm+1, cm] 

               CL   =    [cm-1,cm-2,-----,c1,c0].           (6) 

 

Although (4) seems to be more complicated than 

(3), it is easy to see that equation (4) can be used to 

compute the product at a cost of four polynomial 

additions and three polynomial multiplications. In 

contrast, when using equation  (3), one needs to 

compute four polynomial multiplications and three 

polynomial additions. Due to the fact that 

polynomial multiplications are in general much 

more expensive operations than polynomial 

additions, it is valid to conclude that (4) is 

computationally simpler than the  classic algorithm. 

Karatsuba’s algorithm can be applied recursively to 

the three polynomial multiplications in (4). Hence, 

we can postpone the computations of the 

polynomial products A
H 

B
H
,
 
 A

L 
B

L
 and M, and 

instead we can split again each one of these three 

factors into three polynomial products. By applying 

this strategy recursively, in each iteration each 

degree polynomial multiplication is transformed 

into three polynomial multiplications with their 

degrees reduced to about half of its previous value. 

 

Input: Two element A,B Є GF(2
m
) with 

m=rn=2
k
n,and  where A,B can be 

expressed as, 

A=x
m/2 

A
H
+A

L
, B=x

m/2 
B

H
+B

L
 

Output: A polynomial C=AB with up to 2m-1 

coordinates, 

where C=x
m
C

H
+C

L
. 

Procedure Kmul2
k
 (C, A, B) 
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0. begin 

1. if (r==1) then 

2. C=mul_n(A,B); 

3. return; 

4. for i from 0 to r/2-1 do 

5. MAi=Ai
L
+Ai

H
; 

6. MBi=Bi
L
+Bi

H
; 

7. end 

8.mul2
k
(C

L
,A

L
,B

L
); 

9. mul2
k
(M,M

A
,M

B
); 

10.mul2
k
(C

H
,A

H
,B

H
); 

11. for i from 0 to r-1 do 

12.Mi = Mi+Ci
L
+Ci

H
; 

13. end 

14. for i from 0 to r-1 do 

15.  Cr/2+I = Cr/2+i+Mi; 

16. end 

17. end 

  

Fig (a).m=2
k
n-bit Karatsuba multiplier. 

 

The algorithm presented in figure 1 implements 

theKaratsuba strategy for polynomial multiplication. It 

can be shown that the space and time complexities of 

that algorithm are given as, 

 

#XORs ≤ (m/n)
log

2
3
(8m/r-2+Mxor2

n
) 

                        
 -8m+2;                                    (7) 

#AND  ≤   (m/n)
log

2
3
Mand2

n
; 

Delay    ≤   Tdelay2
n
 + 4Txlog2(m/n). 

 

In this case it has been assumed that the block 

selected to implement the GF(2
n
)  arithmetic has a  

Tdelay 2
n
 gate delay associated with it. 

As it has been mentioned above, the 

hybrid approach proposed here requires the use of an 

efficient multiplier algorithm to perform the n-bit 

polynomial multiplications. It can be shown that the 

space and time complexities for the classic ö n-bit 

multiplier are given as 

 

#XORs    =   (n-1)
2
; 

#ANDs    =    n
2
; 

  Delay     ≤    TAND +TX[Log2n].         (8) 

 

Combining the complexities given in equation (8), 

together with the complexities of equation (7) we 

conclude that the space and time complexities of the 

hybrid m bit Karatsuba multiplier truncated at the n-

bbit multiplicand level are upper bounded by 

 

#XORs  ≤ (m/n)
log

2
3
(n

2
+6n-1)-8m+2; 

#AND   ≤3
log

2
r
Mand2

n
 =(m/n)

log
2

3
n

2
;    (9) 

   Delay ≤ TAND+TX(log2n+4log2r). 

 

4. FPGA IMPLEMENTATIONS OF       

    PARALLEL MULTIPLIERS 

 

In this section we have presented the architectures 

of the parallel multipliers.  The interface logic is the 

same for all multipliers so we can use the same test 

bench and the designs are interchangeable. 

 

4.1. Massey-Omura Multiplier 

 

If implemented fully in parallel, the resource 

requirements of the Massey-Omura multiplier are 

very large (exceeding the LUP resources of our 

FPGA by about 7 percent), but it can be realized 

with any degree of parallelism between fully 

parallel and fully serial. So we use a semi-parallel 

implementation where a multiplication is performed 

in two steps. 

As shown in Figure 1, Massey-Omura consists of 

two cycshift stages' with 117 outputs each. Output n 

is the same as output n - 1 but cyclically rotated by 

one bit. The 117 rotated operand pairs are passed in 

parallel to 117 identical XOR trees (XOR.1 ... 

XOR-117) that compute the lower 117 hits of the 

result. The last outputs of the cycshift stages are fed 

back to the inputs via an operand register, so the 

second set of rotated operands as well as the higher 

pan of the result is generated one clock cycle later. 
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Fig.1.Semi-parallel Massey-Omura multiplier 

 

 

 

4.2.The Classical Multiplier 

 

The implemented classical multiplier consists of a 

polynomial multiplier followed by the modular 

reducer as shown in Figure 2. Assuming that the 

polynomial  

C=C2n-2 x
2n-2

+c2n-3 x
2n-3 

+----+c1x+c0    

Is the product of two polynomials a= a n-1 x
n-1

+ 

an-2 x 
n-2

+----+a1x+a0 and b=bn-1 x
n-1

+bn-2 x
n-2

+-----

+b1x+b0, then different coefficients of c can be 

computed using the equation (1) 

 

 

c0  =    a0b0 

c1  =   a0b1+  a1b0 

              ------- 

cn-1=  a0bn-1+a1bn-2+-----+an-2 b1+an-1 b0      (1) 

          -------- 

cn-3=                                      an-2 bn-1+an-1 bn-2 

cn-2=                                                   an-1 bn-1 

 

 

Each of the rows of (1) has some elements which 

must be combined in a XOR tree to generate a single 

bit of the result. The rows ci and c2n-2-i for 0<= i < n 

- 1 are generated with tree structured XOR-circuits 

of identical length, but with different in- puts. So we 

have a total of 465 XOR trees, where 464 of them 

are  pair wise equal in size. 

 

As earlier design of ours which used only 233 trees 

but additionally 232  multiplexers   required    more  

clock cycles and exceeded the FPGA resources, so 

we decided to use the full number of XOR trees.  

 

  
Fig.2. Classical multiplier for 233 Bit 

 

  

 

 

 

 

4.3.The Hybrid Karatsuba Multiplier 

 

We have used a hybrid structure to combine the 

Karatsuba algorithm with 2 and 3 coefficients 

respectively to generate a Karatsuba algorithm  with 

6 coefficients. Futhermore, we have used a new 

distributed control structure to implement the 

polynomial multiplication. The combination of 

these two Karatsuba methods has already been 

proposed in for composite extension finite 

fields.and for the Optimal Extension fields. But to 

our knowledge, it is the first time that such a 

combination has been implemented in hardware for 

prime extension finite fields. The block diagram of 

the complete multiplier is shown in Figure 3 
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Fig.3.Hybrid parallel Karatsuba multiplier for 233 bit 

 

The multiplier in the upper level consists of three 

80-bit adders, and overlap circuit. Each of the 

multipliers will be used twice during a polynomial 

multiplication to cover the total six 80-bit 80-bit 

multiplications. The control circuit starts the 

multipliers at the at the suitable time tomake use of 

the pipelinestages in the multipliers. It also controls 

the timing of the adders. Since outputs of the 

different multipliers have some powers of z in 

common, the overlap circuit XORs the overlapping 

powers.  

 

5.CONCLUSION 

 

In this section the. performance comparison of the 

FPGA synthesis results were given. All multipliers 

are synthesized for a Xilinx xc2v-6000-ff1517-4 

FPGA without pin mapping and area constraints. In 

subsequent synthesis iterations, we specified timing 

constraints with slightly increasing stringency in 

order to converge to an optimal timing. It should be 

noted that the clock cycle time is computed 

including the pad delays since all multipliers are  

implemented as "stand alone" designs. 

 

 

Multiplie

r 

LUT/FF Equivalen

t  

Gate 

count 

Clock 

period(freq

) 

Classical 37296/3755

2 

528427 ~13.00ns 

(~77Mhz) 

Hybrid  

karatsuba 

11746/1394

1 

289489 11.07ns 

(90.33Mhz

) 

Massey 

Omura 

36857/8543 608149 15.91ns 

(62.85Mhz

) 

 

Table 1.Area requirements and minimum clock 

periods of multipliers. 

 

Table I gives a comparison of the number of 4-input 

LUTs, the number of flipflops, the equivalent gate 

count and the clock period for each multiplier.  
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