
International Journal of communication and computer Technologies, ISSN: 2278-9723

Available at http://www.ijccts.org

 Volume 02 , Issue: 01 Page 11
International Journal of Communication and Computer Technologies www.ijccts.org

Analysis on FPGA Designs of Parallel High Performance Multipliers

Retheesh.D

Saveetha Engineering College

Received: 13-01-2014, Revised: 24-03-2014, Accepted: 29-04-2014, Published online: 21-06-2014

Abstract: For many applications from the areas of

cryptography and coding, finite field multiplication is the

most resource and time consuming operation. In this paper,

optimized high performance parallel GF(2
233

) multipliers for

an FPGA realization were designed and the time and area

complexities were analyzed. One of the multipliers uses a

new hybrid structure to implement the Karatsuba algorithm.

For increasing performance, we make excessive use of

pipelining and efficient control techniques and use a modern

state-of-the-art FPGA technology. As a result we have,

to our knowledge, the first hardware realization of sub

quadratic arithmetic and currently the fastest and most

efficient implementation of 233 bit finite field multipliers.

 1. INTRODUCTION

The arithmetic operations in finite fields are mainly

used in cryptography and error control coding.

Addition and multiplication are the two basic

operations in the finite field GF(2
m
).Addition in

GF(2
m
) is easily realized using m two-input XOR

gates while multiplication is costly in terms of gate

count and time delay. The other operations of the

finite fields, such as exponentiation, division and

inversion can be performed by repeated multi-

plications.As a result there is a need to have a fast

multiplication architecture with low complexities.

The hardware/software implementation efficiency

of finite field arithmetic is measured in terms of

the associated space and time complexities. The

space complexity is defined as the number of XOR

and AND gates needed for the implementation of

the circuit,whereas the time complexity is the total

gate delay of the circuit. The space and time

complexities of a multiplier heavily depend on

how the field elements are represented. An

element of GF(2
m

) is usually represented with

respect to one of the three popular bases:

Polynomial (canonical or standard) basis(PB),

dual basis (DB), and normal basis (NB).

Especially for the area of cryptography where the

extension of the finite field GF(2
m
) is fairly large,

say m > 160, the selection of the multiplication

algorithm has a major impact on the overall system

performance. The selection of the finite field is

based on the FlPS 186-2 standard concerning with

the digital signature algorithms and proposed by

NIST. This standard suggests 5 binary fields,

mainly the extension degrees 163,233, 283, 409,

and 573, which are all prime extensions. We have

selected GF(2
233

) to satisfy the security

requirements in elliptic curve cryptography for the

next years, but our results can be adapted to finite

fields with other prime extensions as well.

For cryptography, the requirements with respect to

performance and security may change depending on

the application. For this reason we use FPGAs as

target technology in order to avoid the flexibility

lacking in ASIC designs. It turns out that many opti-

mizations of field multipliers proposed for ASIC

design do not hold for FPGA. The main differences

are

 Influence of routing on the FPGA

 performance.

 4-input lookup table technology

 instead of 2-input logic gates.

International Journal of communication and computer Technologies, ISSN: 2278-9723

Available at http://www.ijccts.org

 Volume 02 , Issue: 01 Page 12
International Journal of Communication and Computer Technologies www.ijccts.org

 Treatment of high-fanout nets on

FPGAs.

So we decided to create completely new

FPGA optimized designs for the

multipliers.

The paper is organized as follows. In the next

section we give an overview over related work.

Section 3 gives a short introduction into the theory

of operation of the classical, Karatsuba and

Massey-Omura multipliers. The architecture and

FPGA implementation of these multipliers is

described in detail in Section 4. The performance

results and a comparison is given in Section 5.

2. RELATED WORK

Several works concern the comparison of different

hardware based multiplier architectures in the

binary finite fields. The authors of [3] have

compared three known serial multipliers, namely

Berlekamp, Massey-Omura. and a polynomial

basis multiplier. And implemented them for a

small finite field GF(2
8
) in VLSI..[4] considers

VLSI implementation of parallel multipliers for a

class of finite fields GF(2
m
) with extension degrees

m = 8, 16,24, and 32.which are not prime extension

degrees and are believed to have security

weaknesses. [6] considers different parallel

multipliers in GF(2
4
) which is suitable for coding

applications. This work also considers hardware

optimization techniques to improve the

performance of multipliers and make some

estimates which hold only for small finite fields.[7]

gives a detailed comparison of different VLSI

implementations of parallel multipliers in G F (2
4

).Indeed all of the above works (except [4])

correspond to small finite fields and the results can

not be easily extended to larger fields.

With the development of new FPGA families with

large gate counts, however, it is possible to realize

parallel finite field multipliers on a single chip

which performs the total multiplication operation

in a few clock cycles. So it become necessary to

 .

have a performance analysis of the multipliers for large field

extensions (with m>160)to select the best multiplier for a

certain application.

3. MULTIPLICATION IN THE

BINARY FINITE FIELDS

There are several algorithms to multiply two finite

field elements and each of them has its benefits

depending on the finite field size, the

implementation type (hardware or software), and

the time and area requirements. One of the main

differences between these algorithms is the finite

field representation basis. In this section we give a

brief introduction of different hardware based finite

field multipliers in GF(2
m
) along with their space

and time complexities. When the Hamming weight

of the irreducible polynomial plays a significant

role, we assume the existence of an irreducible

trinomial of degree n when considering the

multiplication in GF(2
m
).This is a reasonable

assumption since our special finite field is GF(2
233

),

and the polynomial x
233

 +x
74

 + 1 is irreducible. On

the other hand it is conjectured that a trinomial of

degree m exists for a large amount of values n.

Multipliers will be categorized depending on the

finite field basis.

3.1. Normal Basis Multipliers

An element a in GF(2
m
) is called a normal element,

when the elements of the set

Γ= {a
2^ i

|0<=i< m) are linearly independent. In this

case, the set Γis called a normal basis. One great

advantage of the normal bases is that squaring in

this basis consists of only a cyclic shift (which

requires no logic elements and can he done in

nearly zero time). There are two types of normal

bases for which there exist effective multiplication

International Journal of communication and computer Technologies, ISSN: 2278-9723

Available at http://www.ijccts.org

 Volume 02 , Issue: 01 Page 13
International Journal of Communication and Computer Technologies www.ijccts.org

methods, namely optimal normal bases of type I and

II.

It is well-known that there always exists a normal

basis in the field GF (2
m
) over GF(2) for all

positive integers m .By finding an element β Є

GF(2
m
)such that

 {β,β
2
,------,β

2m-1
}

is a basis of GF(2
m

) over GF(2), any

element A Є GF(2
m
) can be represented

as

 m-1

 A = ∑ αiβ
2^i

= α0β+α1β
2
+----+α m-1β

2m-1
, (1)

 i=0

Where α
i
 Є GF(2), 0 ≤ i≤ m-1, is the ith coordinate

of A with respect to the NB. In short, the normal

basis representation of A will be written as

A= (α0, α1, ----, αm-1).

In vector notation, however, (1) can be written as

 A = α × β
T
 = β × α

T
 ,

Where α =[α0, α1,….,αm-1], β= [β,β
2
, ….β

2m-1
],

and T denotes vector transposition.

 The main advantage of the NB representation is

that an element A can be easily squared by

applying right cyclic shift of its coordinates, since

 A
2
= (αm-1, α0,----- ,αm-2) =

 αm-1 β +α0β
2
+------αm-2 β

2m-1
.

3.1.1.Massey-Omura Parallel Multiplier

The Massey-Omura multiplier is one of the most

famous multipliers that work in the normal basis

representation. It consists of similar blocks which

can work in parallel to generate output bits

simultaneously. One great advantage of this

multiplier is its flexibility as a serial -parallel

multiplier. This means that the designer has the

ability to select an arbitrary number of similar

blocks to achieve different numbers of output

bits in one clock cycle, depending on the given

area constraints. For the case of optimal normal

bases in GF(2
m
) one requires (2m-2)D 2-input

XOR and m D 2-input XOR gales, where D is the

number of output bits per clock cycle. The

minimum combinatorial propagation delay is TAND

+ [log2n]TXOR.

Let A and B be two elements of GF(2
m
) and

represented with respect to the NB as

 m-1

A = ∑ αiβ
2^i

 and

 i=0

 m-1

B = ∑ bj β
2^i

 ,

 j=0

respectively. Let C denote their product as

C=AB= (α×β
T

)×(β×b
T
)=α ×М×b

T
, (4)

Where the multiplication matrix M is

defined by

M = β
T
 × β = [β

2^i+2^j
] =

β20+20 β20+21 …… β20+2m-1

β21+20 β 21+21 ……. β21+2m-1

 . . .

 . . .

 . . .

β2m-1+20 β2m-1+21 …… 2m-1+2m-1β

 (5)

If all entries of M are written with respect to the

NB, then the following is obtained

M=M0β+M1β
2
+-----+Mm-1 β

2m-1
, (6)

where Mis are m x m matrices whose entries belong

to GF(2). By substituting (6) into (4), the

coordinates of C are found as follows:

International Journal of communication and computer Technologies, ISSN: 2278-9723

Available at http://www.ijccts.org

 Volume 02 , Issue: 01 Page 14
International Journal of Communication and Computer Technologies www.ijccts.org

 ci = α ×Мi×b
T
 , 0 ≤ i ≤ m-1,

 = α
 (i)

 ×М0×b
(i)T

, 0 ≤ I ≤m-1, (7)

where α
(i)

 = [αi, αi+1,……αi-1]

 and b(i) = [bi, bi+1,…..,bi-1]

are,respectively, the i-fold left cyclic shift of a and

b . It is not difficult to verify that the number of 1s

in each Mi, 0 <= i <= m – 1, is the same, which is

here after denoted as CN. Since these nonzero

entries of Mi determine the gate count of the

normal basis multiplier, CN is referred to as the

complexity of the NB .

The coordinate ci in (7) can be written as modulo 2

sum of exactly CN terms. Each of these terms is a

modulo 2 product of exactly two coordinates (one

of A and B each). Thus, the generation of ci

requires CN multiplications and C N - 1 additions

over GF(2). In hardware, this corresponds to CN

AND gates and (CN – 1) XOR gates, assuming that

all gates have two inputs. If these XOR gates are

arranged in the binary tree form, then the total gate

delay to generate cis TA + [log2 CN d]TX, where TA

and TX are the delays of one AND gate and one

XOR gate, respectively. For parallel generation of

all cis, i = 0, 1,------, m- 1, one needs mCN AND

and m(CN – 1) XOR gates. Also, one can reduce

the number of AND gates to m
2
 by reusing

multiplication terms over GF(2). Thus, to reduce

the number of XOR gates, we have to choose a

normal basis such that CN is minimum. It was

proven that CN ≥2m - 1.If CN =2m - 1, then the NB

is called an optimal normal basis (type-I or type-

II).

3.2. Polynomial Basis Multipliers

In this basis, each element is represented as a linear

combination of different powers of a root of an

irreducible polynomial. Indeed multiplication in

this basis consists of a polynomial multiplication

followed by a modular reduction. There are

different possibili- ties to multiply two elements

in this basis like the Mastrovito, the classical, and

the Karatsuba multipliers. Since there is only

small difference in time and space complexities

of the Mastrovito and the classical multipliers we

select the classical multiplier because of its

regular structure and the possibility of pipelining

which is difficult to apply to the Mastrovito

multiplier..

3.2.1 Classical Multiplier

The most straight forward method to perform finite

field multiplication is to multiply the polynomials

and then reduce the result modulo an irreducible

polynomial to achieve the final result. The school

method polynomial multiplication requires n2 AND

gates and (n - 1)
2
 XOR gates (2-input each). The

combinatorial propagation delay across a school

method multiplier is T =TAND + [log2 n]TXOR.

Reducing modulo the polynomial f (x) can be done

using (r - l)(n - 1) two input XOR gates, where T

and n are the Hamming weight and the degree of

the polynomial f (x) , respectively.

3.2.2.Karatsuba Multiplier

An approach to reduce the number of gates in the

polynomial basis multipliers is the Karatsuba

method. In this method the number of

multiplications is reduced but at the cost of

increasing the number of additions and the total

propagation delay. This method decreases the total

number of gates from O (n
2
) to the O (n

1.59
), which

is very effective when the polynomials become

large. To achieve a tradeoff between the area and

propagation delay which is long in the Karatsuba

multipliers, we have used a hybrid structure by

using the Karatsuba multiplication formulas(see

[l0]) for the polynomials of degree 1 and 2 in a

hierarchical manner above school method

International Journal of communication and computer Technologies, ISSN: 2278-9723

Available at http://www.ijccts.org

 Volume 02 , Issue: 01 Page 15
International Journal of Communication and Computer Technologies www.ijccts.org

multipliers of degree 39. This structure requires

28800 AND and 31183 XOR gates, and a total

propagation delay of TAND + l4TXOR.. The costs for a

pure Karatsuba multiplier are 6561 AND, 37320

XOR, and TAND + 26TXOR and for a school method

multiplier are 54289 AND, 53824 XOR, and

TAND + 8 T X O R .

Let the field GF(2
m
) be constructed

using the irreducible polynomial P(x) of degree

m=rn,with r=2
k
,k an integer. Let A,B be two

elements in GF(2
m
). Both elements can be

represented in the polynomial basis as,

 m-1 m-1 m/2-1

A = ∑ αix
i

= ∑ αix
i
 + ∑ αix

i

 i=0 i=m/2 i=0

 m/2-1 m/2-1

= x
m/2 ∑ αi+m/2x

i + ∑ αix
i
 = x

m/2
A

H
+A

L

 i=0 i=0

and

 m-1 m-1 m/2-1

B = ∑ bix
i = ∑ bix

i + ∑ bix
i

 i=0 i=m/2 i=0

 m/2-1 m/2-1

 =x
m/2 ∑ bi+m/2x

i
 + ∑ bix

i
 = x

m/2
B

H
+B

L
 i=0 i=0

Then, using last two equations, the polynomial

product is given as

C=x
m

A
H

B
H
+(A

H
B

L
+A

L
B

H
) x

(m/2)
+ A

L
B

L
. (3)

Karatsuba algorithm is based on the idea that the

product of last equation can be equivalently written

as

C = x
m

 A
H
 B

H
+ A

L
B

L
 +

 (A
H
 B

H
 + A

L
 B

L
 + (A

H
 + A

L
)(B

L
+B

H
)) x

m/2

 = x
m

C
H
+C

L
. (4)

Let us define

 MA := AH+AL;

 MB := BL+BH;

 M := MAMB; (5)

Using equation (4),and taking into account that

the polynomial product C has at most 2m-1

coordinates, we can classify it coordinates as

 C
H
 = [c2m-2, c2m-3, ----, cm+1, cm]

 CL = [cm-1,cm-2,-----,c1,c0]. (6)

Although (4) seems to be more complicated than

(3), it is easy to see that equation (4) can be used to

compute the product at a cost of four polynomial

additions and three polynomial multiplications. In

contrast, when using equation (3), one needs to

compute four polynomial multiplications and three

polynomial additions. Due to the fact that

polynomial multiplications are in general much

more expensive operations than polynomial

additions, it is valid to conclude that (4) is

computationally simpler than the classic algorithm.

Karatsuba’s algorithm can be applied recursively to

the three polynomial multiplications in (4). Hence,

we can postpone the computations of the

polynomial products A
H

B
H
,

 A

L
B

L
 and M, and

instead we can split again each one of these three

factors into three polynomial products. By applying

this strategy recursively, in each iteration each

degree polynomial multiplication is transformed

into three polynomial multiplications with their

degrees reduced to about half of its previous value.

Input: Two element A,B Є GF(2
m
) with

m=rn=2
k
n,and where A,B can be

expressed as,

A=x
m/2

A
H
+A

L
, B=x

m/2
B

H
+B

L

Output: A polynomial C=AB with up to 2m-1

coordinates,

where C=x
m
C

H
+C

L
.

Procedure Kmul2
k
 (C, A, B)

International Journal of communication and computer Technologies, ISSN: 2278-9723

Available at http://www.ijccts.org

 Volume 02 , Issue: 01 Page 16
International Journal of Communication and Computer Technologies www.ijccts.org

0. begin

1. if (r==1) then

2. C=mul_n(A,B);

3. return;

4. for i from 0 to r/2-1 do

5. MAi=Ai
L
+Ai

H
;

6. MBi=Bi
L
+Bi

H
;

7. end

8.mul2
k
(C

L
,A

L
,B

L
);

9. mul2
k
(M,M

A
,M

B
);

10.mul2
k
(C

H
,A

H
,B

H
);

11. for i from 0 to r-1 do

12.Mi = Mi+Ci
L
+Ci

H
;

13. end

14. for i from 0 to r-1 do

15. Cr/2+I = Cr/2+i+Mi;

16. end

17. end

Fig (a).m=2
k
n-bit Karatsuba multiplier.

The algorithm presented in figure 1 implements

theKaratsuba strategy for polynomial multiplication. It

can be shown that the space and time complexities of

that algorithm are given as,

#XORs ≤ (m/n)
log

2
3
(8m/r-2+Mxor2

n
)

 -8m+2; (7)

#AND ≤ (m/n)
log

2
3
Mand2

n
;

Delay ≤ Tdelay2
n
 + 4Txlog2(m/n).

In this case it has been assumed that the block

selected to implement the GF(2
n
) arithmetic has a

Tdelay 2
n
 gate delay associated with it.

As it has been mentioned above, the

hybrid approach proposed here requires the use of an

efficient multiplier algorithm to perform the n-bit

polynomial multiplications. It can be shown that the

space and time complexities for the classic ö n-bit

multiplier are given as

#XORs = (n-1)
2
;

#ANDs = n
2
;

 Delay ≤ TAND +TX[Log2n]. (8)

Combining the complexities given in equation (8),

together with the complexities of equation (7) we

conclude that the space and time complexities of the

hybrid m bit Karatsuba multiplier truncated at the n-

bbit multiplicand level are upper bounded by

#XORs ≤ (m/n)
log

2
3
(n

2
+6n-1)-8m+2;

#AND ≤3
log

2
r
Mand2

n
 =(m/n)

log
2

3
n

2
; (9)

 Delay ≤ TAND+TX(log2n+4log2r).

4. FPGA IMPLEMENTATIONS OF

 PARALLEL MULTIPLIERS

In this section we have presented the architectures

of the parallel multipliers. The interface logic is the

same for all multipliers so we can use the same test

bench and the designs are interchangeable.

4.1. Massey-Omura Multiplier

If implemented fully in parallel, the resource

requirements of the Massey-Omura multiplier are

very large (exceeding the LUP resources of our

FPGA by about 7 percent), but it can be realized

with any degree of parallelism between fully

parallel and fully serial. So we use a semi-parallel

implementation where a multiplication is performed

in two steps.

As shown in Figure 1, Massey-Omura consists of

two cycshift stages' with 117 outputs each. Output n

is the same as output n - 1 but cyclically rotated by

one bit. The 117 rotated operand pairs are passed in

parallel to 117 identical XOR trees (XOR.1 ...

XOR-117) that compute the lower 117 hits of the

result. The last outputs of the cycshift stages are fed

back to the inputs via an operand register, so the

second set of rotated operands as well as the higher

pan of the result is generated one clock cycle later.

International Journal of communication and computer Technologies, ISSN: 2278-9723

Available at http://www.ijccts.org

 Volume 02 , Issue: 01 Page 17
International Journal of Communication and Computer Technologies www.ijccts.org

Fig.1.Semi-parallel Massey-Omura multiplier

4.2.The Classical Multiplier

The implemented classical multiplier consists of a

polynomial multiplier followed by the modular

reducer as shown in Figure 2. Assuming that the

polynomial

C=C2n-2 x
2n-2

+c2n-3 x
2n-3

+----+c1x+c0

Is the product of two polynomials a= a n-1 x
n-1

+

an-2 x
n-2

+----+a1x+a0 and b=bn-1 x
n-1

+bn-2 x
n-2

+-----

+b1x+b0, then different coefficients of c can be

computed using the equation (1)

c0 = a0b0

c1 = a0b1+ a1b0

cn-1= a0bn-1+a1bn-2+-----+an-2 b1+an-1 b0 (1)

cn-3= an-2 bn-1+an-1 bn-2

cn-2= an-1 bn-1

Each of the rows of (1) has some elements which

must be combined in a XOR tree to generate a single

bit of the result. The rows ci and c2n-2-i for 0<= i < n

- 1 are generated with tree structured XOR-circuits

of identical length, but with different in- puts. So we

have a total of 465 XOR trees, where 464 of them

are pair wise equal in size.

As earlier design of ours which used only 233 trees

but additionally 232 multiplexers required more

clock cycles and exceeded the FPGA resources, so

we decided to use the full number of XOR trees.

Fig.2. Classical multiplier for 233 Bit

4.3.The Hybrid Karatsuba Multiplier

We have used a hybrid structure to combine the

Karatsuba algorithm with 2 and 3 coefficients

respectively to generate a Karatsuba algorithm with

6 coefficients. Futhermore, we have used a new

distributed control structure to implement the

polynomial multiplication. The combination of

these two Karatsuba methods has already been

proposed in for composite extension finite

fields.and for the Optimal Extension fields. But to

our knowledge, it is the first time that such a

combination has been implemented in hardware for

prime extension finite fields. The block diagram of

the complete multiplier is shown in Figure 3

International Journal of communication and computer Technologies, ISSN: 2278-9723

Available at http://www.ijccts.org

 Volume 02 , Issue: 01 Page 18
International Journal of Communication and Computer Technologies www.ijccts.org

Fig.3.Hybrid parallel Karatsuba multiplier for 233 bit

The multiplier in the upper level consists of three

80-bit adders, and overlap circuit. Each of the

multipliers will be used twice during a polynomial

multiplication to cover the total six 80-bit 80-bit

multiplications. The control circuit starts the

multipliers at the at the suitable time tomake use of

the pipelinestages in the multipliers. It also controls

the timing of the adders. Since outputs of the

different multipliers have some powers of z in

common, the overlap circuit XORs the overlapping

powers.

5.CONCLUSION

In this section the. performance comparison of the

FPGA synthesis results were given. All multipliers

are synthesized for a Xilinx xc2v-6000-ff1517-4

FPGA without pin mapping and area constraints. In

subsequent synthesis iterations, we specified timing

constraints with slightly increasing stringency in

order to converge to an optimal timing. It should be

noted that the clock cycle time is computed

including the pad delays since all multipliers are

implemented as "stand alone" designs.

Multiplie

r

LUT/FF Equivalen

t

Gate

count

Clock

period(freq

)

Classical 37296/3755

2

528427 ~13.00ns

(~77Mhz)

Hybrid

karatsuba

11746/1394

1

289489 11.07ns

(90.33Mhz

)

Massey

Omura

36857/8543 608149 15.91ns

(62.85Mhz

)

Table 1.Area requirements and minimum clock

periods of multipliers.

Table I gives a comparison of the number of 4-input

LUTs, the number of flipflops, the equivalent gate

count and the clock period for each multiplier.

7. REFERENCES

 [I] Arash and Anwar “A new construction of Massey Omura

 parallel multiplier over GF(2
m
)”, “ IEEE Transactions on

 computers, Vol 51 No.5,May 2002”.

 [2] Henriquez & Koc “On fully parallel karatsubMultipliers for

 GF(2
m
)”, in proceeding(394) Computer sciences and

 technology.Cancum,Mexico:ACTA Press,2003

 [3] I. S Hsu. T. K. Truong. L. J. Deutsch. And I. S . Reed,

 “Acomparition of VLSI architecture of finite field

 multipliers using dual, normal. Or standard basis." IEEE

 Trunsucrionr on Computer.<. vol. 37. no. 6. DO. 735-

739.

[4] Niegel. P. Sman. "How Secure Are Elliptic CUNW over

 CompositeExtension Fields?," in Advuncss in

 Crypmlugy: Proceedings 6EU-ROCRYPT2001, Aarhus.

 Denmark, B. Pfilzmann. Ed. 2001, number2045 in

 Lecture Notes in Computer Science. pp. 3&39.

 Springer-Verlvg.

[5] C. Gregory. C. Ahlquist. B. Nelson, and M. Rice.

 "Optimal finitefields for FPGAs:' in Proceedings offhe

 91h Inrrmuiionul Worbhopon Field Pmgrummoble h g i

 c and Applications (FPL 99J. Glasgow.UK. AUKUSI

 1999, number 1613. DD. 51-61, Sorineer. –

