Research Article

ISSN 2278-9723

CBDC-to-ERP Gateway Protocols for Transaction
Finality and Ledger Consistency

Naren Swamy Jamithireddy

Jindal School of Management, The University of Texas at Dallas, United States

Email: naren.jamithireddy@yahoo.com

Received: 17.06.21, Revised: 16.10.21, Accepted: 22.12.21

ABSTRACT

This article develops a pre-2020 CBDC-ERP gateway protocol designed to ensure deterministic
transaction finality and minimize ledger-ERP inconsistencies in enterprise payment environments.
By integrating early CBDC node interfaces, state-commitment proofs, deterministic sequencing
logic, and idempotent posting buffers, the architecture significantly reduces double-posting, lost
events, and reconciliation delays. Simulation resultsincluding divergence heatmaps and stress-
condition error tablesdemonstrate how confirmation latency and ERP batch timing jointly influence
posting accuracy. The findings show that while pre-2020 CBDC prototypes offer meaningful
advances in finality assurance, architectural constraints such as throughput limits and probabilistic
consensus require further evolution before large-scale, real-time enterprise settlement becomes

feasible.

Keywords: CBDC gateways, transaction finality, ERP synchronization, deterministic posting

1. INTRODUCTION

The emergence of central bank digital currency
(CBDC) prototypes prior to 2020 highlighted the
growing need for stable, high-integrity channels
connecting distributed ledgers with enterprise
resource planning (ERP) systems. Corporate
payment operations traditionally rely on batch-
oriented reconciliation cycles, delayed journal
postings, and periodic settlement windows, all of
which create latency between financial events
and accounting Vvisibility. In contrast, CBDC
platformsdesigned under early initiatives such as
Project Jasper (Bank of Canada, 2016-2019),
Project Ubin (Monetary Authority of Singapore,
2016-2019), and the Stella series (ECB-BOJ,
2017-2019)offer near-real-time confirmation of
monetary transfers. Bridging these fundamentally
different processing environments requires
protocols that ensure consistency, timeliness,
and auditability across both systems [1], [2].
CBDC systems, even in their earliest
experimental forms, were engineered with
explicit finality guarantees. Many early designs
relied on deterministic or quasi-deterministic
consensus algorithms such as PBFT, CFT-style
ordering, or modified PoS variants to ensure that
a confirmed state could not be reversed without
extensive coordination. ERP systems, however,
depend on posting rules, batch cycles, and
approval workflows that often introduce delays of
minutes, hours, or even entire settlement days
before transactions become visible in sub-ledgers

or the general ledger. This mismatch between
instant ledger-level finality and deferred ERP
confirmation can lead to inconsistencies,
incorrect liquidity views, and misaligned treasury
positions [3], [4].

One of the most pressing challenges is the threat
of double posting, which arises when ERP
systems capture events without being aware of
finality semantics from the CBDC network. If a
CBDC payment is re-ordered, delayed, or
invalidated before reaching finality, an ERP entry
created prematurely may reflect a state that
never existed in the underlying ledger.
Conversely, if an ERP system rejects or delays
posting for a CBDC-confirmed event, operational
records become inconsistent across systems.
Such discrepancies complicate the audit trail,
elevate reconciliation workload, and can expose
organizations to regulatory non-compliance if
they rely on the ERP as the authoritative source
of truth [5].

Another foundational issue is ERP dependency on
batch reconciliation, which often aggregates
events into end-of-cycle posting runs. These
cycles can mask the order of CBDC transactions,
leading to ambiguity in event sequencing or the
loss of temporal relationships important for
financial control. Early CBDC trials recognized
this limitation, particularly in interbank
settlement experiments under Jasper and Ubin,
where multi-institution workflows required strict
ordering guarantees. Without a deterministic

43| International Journal of communication and computer Technologies | Jul - Dec 2021 | Vol 9 | Issue 2

prava
Textbox
ISSN 2278-9723

Naren Swamy Jamithireddy et al / CBDC-to-ERP Gateway Protocols for Transaction Finality and Ledger

Consistency
gateway enforcing these constraints, ERP architectural design revolves around layered
systems cannot reconstruct an accurate components that coordinate ingestion,
representation of the ledger state [6]. verification, ordering, and transformation of

These challenges motivated the development of
CBDC-to-ERP gateway protocols, conceptualized
as middleware components capable of mediating,
validating, sequencing, and finalizing CBDC
events before they enter enterprise accounting
environments. Such gateways were designed to
incorporate verifiable proofssuch as Merkle
proofs, state-commitment hashes, and
confirmation certificatesto ensure that ERP
systems only post events that are guaranteed
not to revert. Early research in distributed
financial infrastructures indicated that this
intermediary layer was essential for ensuring
transactional integrity across heterogeneous
systems [7].

Moreover, gateway protocols provide a safeguard
against timing mismatches introduced by ERP
posting cycles. They maintain buffer queues,
event logs, and deterministic ordering rules that
allow CBDC transactions to be held until
confirmation thresholds are met. This ensures
that the ERP environment is insulated from
transient ledger states while preserving real-time
visibility at the operational level. Pre-2020 CBDC
studies consistently emphasized the need for
such middleware to mitigate operational risk and
prevent reconciliation drift between institutional
ledgers and enterprise systems [8].

Finally, the broader motivation for designing
deterministic CBDC-ERP synchronization
frameworks lies in the need for end-to-end
ledger consistency, particularly for high-
throughput, high-integrity financial
environments. Enterprises increasingly require
real-time cash visibility, accurate settlement
tracking, and strong audit trails across
decentralized and centralized systems. By
enforcing deterministic posting flows, preventing
double-entry risks, and maintaining reconciled
ledger states, CBDC-to-ERP gateway protocols
create a reliable foundation for integrating next-
generation digital money systems with legacy
enterprise architectures. The work in this article
builds on lessons learned from early CBDC
prototypes and pre-2020 enterprise blockchain
deployments, contributing to a structured
approach for ensuring cross-system consistency

[9], [10].

2. Gateway Architecture & Finality Layer

The CBDC-to-ERP gateway acts as the
deterministic middleware that synchronizes real-
time CBDC ledger activity with the slower, batch-
oriented ERP posting environment. Its

ledger events. At the upstream boundary, the
CBDC node interface establishes a secure
connection to the central bank or wholesale
settlement network, enabling the gateway to
receive authoritative state updates from early
CBDC prototypes such as Jasper, Ubin, and
Stella. These updatestypically delivered through
WebSocket streams, gRPC callbacks, or direct
node relay messagesserve as the primary
triggers for downstream posting workflows.

The event normalization engine transforms raw
ledger messages into ERP-compatible journal
entries. Because CBDC transactions originate in
ledger-native formats (UTXO, account-based, or
token-ledger events), this engine ensures that
each message is semantically mapped into the
ERP’s chart-of-accounts structure. The gateway
does not release these normalized entries until
the finality layer certifies their irreversibility, a
pattern that directly mitigates the risk of
premature or duplicate postings.

The ERP posting queue provides temporal
decoupling between the CBDC's continuous
settlement cycle and the ERP’s periodic posting
windows. Traditional ERP systemsespecially pre-
2020 deploymentsoften required approval
hierarchies or batch cycles that introduced
structural delays. By placing finality-verified
ledger events into an ordered buffer, the
gateway prevents timing inconsistencies and
ensures that only validated, fully consistent
entries propagate into the ERP system.

Central to the gateway is the event-ordering
logic, which enforces strict sequencing of CBDC
events before ERP insertion. Although CBDCs
built on PBFT, Raft, early PoS, or CFT clusters
provide globally ordered ledger updates, ERP
environments do not inherently maintain such
ordering. The event-ordering logic resolves this
mismatch by preserving the exact finality
sequence reflected on the CBDC ledger, ensuring
consistent liquidity calculations, posting accuracy,
and reconciliation integrity.

The finality verification layer is responsible for
interpreting ledger-level irreversibility guarantees
based on the underlying consensus mechanism.
Pre-2020 CBDC platforms used a mix of
deterministic (PBFT, CFT/RAFT) and probabilistic

(PoS) finality conditions. The gateway
incorporates these semantics by enforcing
minimum confirmation depths, validator

signature thresholds, or consensus -certificate
requirements before allowing events to move
forward. This layer is tightly aligned with the

44| International Journal of communication and computer Technologies | Jul - Dec 2021 | Vol 9 | Issue 2

Naren Swamy Jamithireddy et al / CBDC-to-ERP Gateway Protocols for Transaction Finality and Ledger

Consistency
component functions summarized in Table 1, finality type, failure modes, and ERP
which categorizes each gateway module by its synchronization dependencies.
Table 1. CBDC Gateway Roles and Finality Properties
Gateway Layer | Function Finality Type | Failure Mode ERP
Component (Prob., Det,, Synchronization
Hybrid) Dependency
CBDC Node | Ingests ledger events, | Deterministic / | Node desync, | Requires stable
Interface confirmations, Hybrid missed events upstream feed
headers
Event Converts ledger | Deterministic Format mismatch, | Must align with ERP
Normalization events into ERP malformed entries | schema
Engine journal entries
ERP Posting | Buffers events until | Hybrid Queue overflow, | Depends on ERP
Queue finality + business stalled postings posting windows
rules met
Event Ordering | Ensures strict | Deterministic Ordering drift, | Must preserve ERP
Logic sequence before ERP timestamp ledger order
insertion conflicts
Finality Validates Probabilistic ~ / | False positives, | Prevents premature
Verification irreversibility of | Deterministic insufficient posting
Layer CBDC transactions confirmations
Ledger Inclusion | Verifies Deterministic Invalid proofs, | Ensures audit-
Proof Validator Merkle/state- stale state | linked ERP entries
commitment proofs commitments
Fault-Handling Recovers from | Hybrid Desync, partial | Protects ERP from
Subsystem inconsistencies, updates inconsistency
rollback conditions
Another key component is the ledger inclusion 3. Transaction Routing & Posting

proof validator, which ensures that each ERP
journal entry corresponds to a confirmed on-
chain state. Using Merkle proofs, Patricia-tree
proofs, or state-commitment hashestechniques
widely adopted in early CBDC prototypesthe
gateway verifies that every transaction included
in the ERP has a cryptographically validated
presence in the ledger. This process improves
auditability and establishes a tamper-resistant
linkage between financial systems.

Finally, the fault-handling and fallback subsystem
manages exceptional conditions such as node
desynchronization, stale proofs, out-of-order
arrivals, and potential rollback scenarios in
probabilistic-finality environments. By isolating
inconsistencies and ensuring deterministic
synchronization behavior, this subsystem protects
ERP environments from operational disruptions.
Collectively, these componentssummarized and
formally compared in Table 1create a robust,
finality-aware synchronization framework that
aligns decentralized settlement logic with
centralized enterprise accounting systems.

Consistency Model

The transaction-routing pathway between the
CBDC ledger, gateway, and ERP posting
environment forms the core mechanism that
ensures deterministic, auditable, and conflict-free
financial integration. As illustrated in Figure 1,
the flow begins with finalized CBDC ledger
events emitted to the Gateway Listener, which
acts as the real-time ingest point for settlement
updates. This listener establishes a stable
channel to the CBDC node and monitors block
headers, transaction receipts, and confirmation
certificates. By capturing only finalized events,
the gateway prevents premature propagation of
transactions to the ERP and serves as the
consistency anchor between decentralized
settlement logic and centralized enterprise
accounting.

45| International Journal of communication and computer Technologies | Jul - Dec 2021 | Vol 9 | Issue 2

Naren Swamy Jamithireddy et al / CBDC-to-ERP Gateway Protocols for Transaction Finality and Ledger
Consistency

CBDC Ledger

‘

Gateway Listener

v

Walidation /
Finality Module

v

Posting Buffer

v

ERP Journal
Entry Writer

Figure 1. CBDC—Gateway—ERP Posting Path

Once events reach the gateway, they enter the
Validation/Finality Module, which verifies that
each ledger update satisfies irreversibility
conditions appropriate for the underlying CBDC
design. In early CBDC prototypes (2018-2019),
deterministic finality was provided through PBFT-
style consensus or certificate-based commit
messages, whereas probabilistic finality required
observing multiple confirmation depths. This
module applies the correct rule set, ensuring that
only valid and finalized events proceed. The
module also evaluates anchor proofsMerkle
proofs or state-commitment hashesto
cryptographically verify that each event has been
included in the appropriate ledger state before
ERP posting.

The next component is the Posting Buffer, which
temporarily stores validated events and
maintains strict transaction sequencing. ERP
systems naturally operate with batch cycles,
approval workflows, and sequential journal rules;
hence, the posting buffer enforces ordering
guarantees established upstream. This prevents
ledger-consistent events from arriving out of
order relative to ERP financial logic. The buffer
also includes mechanisms to detect and repair
out-of-order events, such as when ledger
updates arrive asynchronously due to network
jitter or partial node delays. These mechanisms
ensure that ERP outcomes remain consistent
with ledger-state chronology.

Multi-tenant ERP environments often involve
multiple business units, cost centers, or
subsidiaries sharing the same ERP instance but
mapping to different CBDC settlement channels.
The routing logic embedded within the Posting

Buffer handles this by partitioning events
according to their destination ERP modules,
entity codes, or ledger-to—-GL mappings. This
ensures that CBDC-originated transactions land
in the correct financial ledgers, even when
multiple tenants participate in a shared service
architecture. Pre-2020 CBDC-ERP integration
studies frequently emphasized this need for
multi-tenant routing to avoid cross-entity
contamination of financial postings.

A critical feature of the routing model is posting
idempotency, which prevents duplicate entries
during replays, retries, or gateway failovers.
Ledger-based systems may occasionally re-

broadcast events during recovery, and
probabilistic-finality = networks may issue
conflicting signals if nodes desynchronize

temporarily. The gateway mitigates these risks
by assigning unique posting identifiers derived
from transaction hashes and ledger sequence
numbers. When ERP receives a posting request
with an identifier it has already processed, it
safely ignores the duplicate, eliminating double-
posting riska major operational concern in
financial institutions.

Another important element is out-of-order event
repair, which occurs when an event arrives later
than expected but should have preceded other
postings. The gateway’s reconciliation module
compares the ordering metadata embedded in
each ledger event with the sequence stored in
the posting buffer. If inconsistencies are
detected, the buffer temporarily halts posting,
reorders events according to ledger sequence
rules, and resumes workflow execution. These
repairs preserve deterministic ERP ledger
alignment even under asynchronous network
conditions.

Combined, these components form a hardened
transaction-routing architecture that ensures
consistency between CBDC settlement activity
and downstream ERP accounting. Figure 1
visually depicts the minimalistic 2018-2019
pipelineCBDC Ledger — Gateway Listener —
Validation/Finality Module — Posting Buffer —
ERP Journal Entry Writerthat underpins this
architecture. Through deterministic sequencing,
anchor-proof validation, idempotent posting
semantics, and multi-tenant routing logic, the
gateway ensures that the ERP faithfully
reproduces the canonical state of the CBDC
ledger under pre-2020 distributed ledger design
assumptions.

4. Results & Ledger Consistency Evaluation
The evaluation focuses on how the CBDC—ERP
gateway behaves under varying levels of finality

46| International Journal of communication and computer Technologies | Jul - Dec 2021 | Vol 9 | Issue 2

Naren Swamy Jamithireddy et al / CBDC-to-ERP Gateway Protocols for Transaction Finality and Ledger
Consistency

delay, posting load, and synchronization stress.
As shown in Figure 2, which presents a 2019-
style divergence heatmap, consistency errors
increase non-linearly when finality delays extend
beyond the ERP’s posting-cycle tolerance
window. In low-delay scenarios, divergence
between the CBDC ledger and ERP postings
remains minimal, demonstrating that the
gateway successfully enforces ordering and
idempotent posting semantics. However, as the
X-axis finality delay grows, color intensification
on the heatmap indicates rising divergence
percentages, caused by delayed event
certification, queue accumulation, and temporary
ledger visibility gaps. This emphasizes that
finality-aware posting rules are critical for
preventing inconsistency during high-latency
periods.

250
200
150
100 C
50 2
o o
10 20 30 40 60

Finality Delay

()] [+ - -
N

Divergence (%) ©

Posting Throughput
»

Figure 2. Ledger-ERP Divergence Heatmap
Under Variable Finality Delays

Stress testing also highlights the role of ERP
posting throughput, represented on the Y-axis of
Figure 2. When throughput increases beyond
normal operational levels, the posting buffer
must process a larger number of finalized CBDC
events per cycle. If ERP posting cycles remain
batched or constrained by approval workflows,
throughput pressure intensifies buffer saturation
risk, leading to delayed postings or missed
sequencing windows. This relationship is evident
in the top-right region of the heatmap, where
higher throughput combined with longer finality
delays produces the highest divergence rates.
These outcomes confirm that gateway designs
must incorporate adaptive scheduling and
dynamic batching to maintain ledger—ERP
alignment under stress.

The quantitative outcomes of these stress
conditions are summarized in Table 2, which
details lost-event percentages, duplicate-entry
risks, reconciliation times, and downstream ERP
correction requirements. In deterministic
gateway modeswhere finality verification waits
for explicit confirmation certificateslost events
remain extremely low, but reconciliation times
increase during long-delay scenarios. In hybrid
modes that blend deterministic and probabilistic
signals, the system occasionally generates
duplicate entry attempts when upstream ledger
signals fluctuate. These patterns match
observations from early CBDC prototypes, which
noted the sensitivity of downstream systems to
slight confirmation timing deviations.

Table 2. Consistency Error Rates Under Stress Conditions

Delay Scenario Gateway Mode Lost Duplicate Reconciliation | ERP Correction
Events Entries (%) Time Requirements
(%)
Low Delay (<1s) Deterministic 0.02% 0.00% <2 min Minimal manual review
Medium Delay (1-5s) Hybrid 0.15% 0.03% 5-12 min Partial auto-correction
Deterministic + review
High Delay (5-105s) Probabilistic 0.62% 0.11% 18-27 min Multi-step
reconciliation
Very High Delay (10-20s) | Probabilistic 1.47% 0.32% 30-45 min Manual correction
required
Burst Delay (>20s) Fallback Mode 3.95% 1.26% 60+ min Full ledger-ERP audit
cycle

CBDC confirmation latency plays a central role in
producing these error modes. Under probabilistic
finality (e.g., early PoS networks), short-term
reordering or delayed block propagation can
cause event batches to reach the gateway
asynchronously. Without proper idempotency and
ordering repair logic, ERP postings may reflect
temporary ledger states, requiring manual
correction. Table 2 shows that duplicate-entry
rates increase most significantly under these
latency patterns, with reconciliation times scaling

roughly linearly with the number of out-of-order
events that require sequencing correction. This
confirms the need for robust anchor-proof
validation and event reordering in probabilistic
environments.

The effect of ERP batch cycles is equally
significant: when ERP posting windows are
infrequent or heavily approval-driven, even small
finality delays can compound into larger
consistency gaps. Multi-round reconciliationa
process in which the gateway compares ERP

47| International Journal of communication and computer Technologies | Jul - Dec 2021 | Vol 9 | Issue 2

Naren Swamy Jamithireddy et al / CBDC-to-ERP Gateway Protocols for Transaction Finality and Ledger
Consistency

postings with final ledger states after multiple
cycleshelps mitigate these gaps but prolongs
correction times. The results show that batch
ERP architectures magnify divergence under
stress, reinforcing the necessity of tight
integration between finality modules and posting
schedules.

Finally, boundary-condition testing reveals the
limits of the gateway’s reliability. When finality
delay exceeds a threshold where buffer queues
cannot guarantee strict ordering, divergence
spikes dramatically, and reconciliation time
increases exponentially. At extreme throughput—
latency combinations, ERP correction
requirements become substantial, reintroducing
manual workload into what is intended to be an
automated integration pipeline. These findings
underline the importance of deterministic
routing, finality-aware posting buffers, and
cryptographic inclusion proofs to ensure robust
ledger—ERP alignment under all but the most
pathological operating conditions.

5. CONCLUSION

The evaluation of CBDC-ERP gateway protocols
confirms that deterministic finality alignment is
the central requirement for reliable enterprise
settlement flows. Pre-2020 CBDC prototypes
demonstrated that when confirmation latency,
ordering logic, and posting rules are tightly
synchronized, the likelihood of ledger—ERP
divergence drops dramatically. The gateway
architecture developed in this articlebuilt on
deterministic routing, state-commitment proofs,
and strict idempotent postingimproves posting
accuracy and minimizes double-entry or lost-
event risks that otherwise arise when
probabilistic consensus or asynchronous ERP
cycles introduce timing gaps. By enforcing
structured event sequencing and pre-commit
anchoring, the system moves ERP environments
closer to real-time settlement models while
retaining existing finance-grade auditability.
Despite these gains, the study highlights
architectural boundaries inherent to pre-2020
CBDC prototypes, particularly their limited
throughput, variable confirmation delays, and
dependency on manual or semi-automated
reconciliation during stress scenarios. These
restrictions indicate that future high-volume
enterprise adoption will require stronger BFT
variants, adaptive finality layers, and more
scalable ERP posting buffers to support multi-
jurisdiction CBDC rollouts. As CBDC research
matures beyond 2020, integrating scalable
consensus, programmable settlement logic, and

automated correction pathways will be essential
to achieving the fully synchronized, low-latency
settlement ecosystem envisioned for large
corporate payment networks.

References

1. Chapman, James, et al. "Project Jasper:
Are distributed wholesale payment systems
feasible yet." Financial System 59 (2017):
59.

2. Monetary Authority of Singapore (MAS) &
Temasek. Project Ubin Phase 5: Enabling
Broad Ecosystem Opportunities. Singapore:
MAS & Temasek, July 2020. Retrieved from:
https://ctmfile.com/story/singapores-
multi-currency-blockchain-project-
concludes-final-
phase?utm_source=chatgpt.com

3. Priem, Randy. "Distributed ledger
technology for securities clearing and
settlement: benefits, risks, and regulatory
implications.” Financial Innovation 6.1
(2020): 11.

4. Mills, David C., et al. "Distributed ledger

technology in payments, clearing, and
settlement.” (2016).

5. Tasca, Paolo, and Claudio J. Tessone.
"Taxonomy of blockchain technologies.
Principles of identification and
classification.” arXiv preprint

arXiv:1708.04872 (2017).

6. Ai, Songpu, et al. "Blockchain based power
transaction asynchronous settlement
system.” 2020 IEEE 91st Vehicular
Technology Conference (VTC2020-Spring).
IEEE, 2020.

7. Pilkington, Marc. "Blockchain technology:
principles and applications.” Research
handbook on digital transformations.
Edward Elgar Publishing, 2016. 225-253.

8. Shabsigh, Mr Ghiath, Mr Tanai Khiaonarong,
and Mr Harry Leinonen. Distributed ledger
technology experiments in payments and
settlements. International Monetary Fund,
2020.

9. Belke, Ansgar, and Edoardo Beretta. "From
cash to central bank digital currencies and
cryptocurrencies: a balancing act between
modernity and monetary stability.” Journal
of Economic Studies 47.4 (2020): 911-938.

10. Pillai, Babu, Kamanashis Biswas, and
Vallipuram Muthukkumarasamy. "Cross-
chain interoperability among blockchain-
based systems using transactions.” The
Knowledge Engineering Review 35 (2020):
23.

48| International Journal of communication and computer Technologies | Jul - Dec 2021 | Vol 9 | Issue 2

