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ABSTRACT

The fast development of heterogeneous Internet of Things (IoT) ecosystems
has turned real-time network monitoring into a necessary element to be
taken into consideration to guarantee reliability and security. In this paper,
a flexible monitoring system is described that uses passive metering meth-
ods to examine communication protocols like MQTT, CoAP and AMQP in large
internet of things implementation. The framework has applied flow level
metadata, time based correlation, and profiling of devices to identify anom-
alies without probing. Experimental testing of 1,200 loT devices incorporates
92 percent accuracy in detecting the aberrant behaviour and protocol abuse.
The presented solution offers a protocol-agnostic network intelligence base
and enables the following-generation loT traffic auditing and intrusion pre-
vention system.
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INTRODUCTION

The advent of the Internet of Things (loT) has
united billions of electronics with the lightweight
communication  framework, including Message
queuing Telemetry Transport (MQTT), Constrained
application protocol (CoAP), and Advanced message
queuing protocol (AMQP). Although optimised to work
in low-latency and constrained environments, these
protocols are very difficult to monitor because they
are asynchronous and have very different protocols.
With the proliferation of loT infrastructures, passive
and adaptive monitoring has become extremely
necessary to ensure the integrity of operations and
their resistance against possible intrusions."

The current loT monitoring systems have a ten-
dency to use active probing, where artificial traffic or
periodic polls are exchanged to endpoints, to estimate
response times and availability. Nevertheless, proactive
techniques are able to congest limited networks and
distort actual traffic patterns.® On the other hand, pas-
sive measurement methods examine the network flows
and metadata that already exist without the addition
of network traffic, thereby maintaining transparency in
the network and causing limited interference.l! Passive
analytics enable persistently viewing the interactions
of the loT and therefore detecting anomalies based on
behavior and assessing the quality adaptively.

Existing studies have paid attention to special-
ized monitoring algorithms of individual protocols.
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An example is MQTT-based flow inspection of message
flooding and topic hijacking, and CoAP observation
models are focused on packet timing and retransmis-
sion detection.! These solutions are however, pro-
tocol-specific and would not be able to generalize
on heterogeneous deployments of the loT. Scalabil-
ity and interoperability are not possible in the real
world because of the absence of protocol-agnostic
structures.

The current advances in machine learning and
edge analytics have enhanced network monitoring
intelligence. Statistical learning and flow level
measures have been combined in works to improve
traffic classification.l® 71 However, such structures
usually need labelled datasets and massive retraining
to fit the new protocols. As a reaction, metadata
aggregation-based adaptive monitoring architectures
with unsupervised learning have become promising
solutions.

Additional proposals were for protocol parsing
acceleration using the modular or hardware-based
network analyzers.!” "% Even though these architectures
recorded efficiency improvements; they were limited
by protocol dependency. Articles of federated
analytics applied in IoT anomaly detection have also
been investigated!'"! but synchronization overhead and
model drift remains an unresolved problem.

IoT node design and energy-efficient networking
Complementary studies on IoT node design and
networking favor scalability and sustainability
requirements. The development of energy-conscious
routing algorithms,!' Low -power Internet-of-Things
node designs,["¥ RF energy harvesting systems!'! and
smarter antenna arrays!'™ contribute to a stronger
base of a healthy loT infrastructure an indispensable
prerequisite to network-level monitoring systems like
the one developed in this paper.

Nevertheless, although significant advances have
been made, available literature still does not include
lightweight, passive monitoring framework that would

be able to adjust according to the heterogeneous loT
traffic patterns in real time. This paper fills the said
gap by introducing an Adaptive Network Monitoring
Framework (ANMF) based on the utilization of
flow-level metadata, time correlation, and device
behavioral modelling to identify anomalies in a variety
of loT communication protocols. ANMF is new in that it
can be generalized over MQTT, CoAP and AMQP without
reconfiguration or active probing. The objectives of
the framework are three-fold:
(1) to offer statistical flow modelling-based anomaly
detection protocol-independent;
(2) to provide scalable and passive monitoring of large
loT infrastructures;
(3) to combine temporal and behavioral characteristics
into one adaptive analytics process.

METHODOLOGY

The suggested Adaptive Network Monitoring
Framework (ANMF) incorporates three functional
layers, i.e., data acquisition, adaptive analytics, and
response orchestration. It is designed based on passive
traffic monitoring and lightweight statistical modelling
in real-time anomaly detection.

Framework Architecture
As shown in Figure. 1 the architecture starts with a
Packet Capture Layer (PCL) which reflects network
traffic on loT gateways and routers either through
SPAN or NetFlow. This layer uses packet header,
flow timestamps and payload metadata and removes
sensitive data to ensure privacy. The metadata is
standardized to a format with 32 flow characteristics
that consist of protocol identifiers, source/destination
pairs, message sizes, and inter-packet delays.
Adaptive Analytics Layer (AAL) utilizes two
modules. The Temporal Correlation Engine (TCE) that
comes first is a model that flows timing patterns at the
flow level based on exponentially weighted moving
averages (EWMA) to identify anomalies in periodic

Packet Capture Layer PCL-
Mirrors IoT traffic via
SPAN/NetFlow- Extracts
headers & timestamps -
Normalizes 32 flow

—

Adaptive Analytics Layer
AAL - Temporal Correlation
Engine (TCE)- Device
Behavior Profiler (DBP)-
Detects anomalies via

Response Orchestration
Layer ROL - Generates
adaptive responses-
Updates monitoring

—

Fig. 1: Architecture of the proposed Adaptive Network Monitoring Framework (ANMF) showing the three
major layers: data acquisition, adaptive analytics, and response orchestration.
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communication. Second, a statistical fingerprint of
every device is constructed by the Device Behavior
Profiler (DBP) which captures long-term characteristics
like mean packet size and burst frequency. The TCE
and DBP can be used to detect an anomaly when the
behavioral vectors surpass pre-established Mahalanobis
distance thresholds.

Algorithmic Workflow
The algorithm works in the following way:

1. Flow Aggregation: Raw packets streams are
aggregated into flows depending on 5-tuple keys
(IP source/destination, port, and protocol).

2. Features Extraction Temporal features (At),
spatial features (src/dst frequency) and statistical
features (entropy, packet length variance) are
extracted.

3. Adaptive Modelling: The adaptive modelling is
a base behaviour model is, which is trained on
normal operation data through Gaussian mixture
modelling. The probability of a given incoming
flow given is was computed.

4. Decision of Anomaly: In case , and theta is a
confidence level based on historical variance, the
flow is considered anomalous.

5. Adaptation of feedback: The anomalous samples
are reexamined and upon confirmation of being
benign they are included in to learn incrementally.

Mathematically the adaptive update rule can be
represented as:

MEY = (1M 4,

In which n is the learning rate (0.05=0.1), which requires
delicate adaptation to acceptable behavioral drift.

Implementation Details
Python 3.11 with the Scapy library and Pandas library
to parsing and analyze data were used to implement

the prototype. Traffic information was obtained on a
testbed of 1,200 IoT devices deployed in 50 gateways.
Eclipse Mosquitto and libcoap were used to simulate
MQTT, CoAP and AMQP communications. The system
was implemented on a 16 core Intel Xeon server
with 64GB RAM, with real time throughput of about
25000 packets/s with a latency of less than 3 ms
per classification. Besides throughput and latency,
the framework was tested on the ratio of the packet
delivery (PDR), jitter and the reliability of the flows
at different network loads. The measured jitter was
less than 1.5 ms at a mean flow rate of 25 k packets/s,
and PDR was more than 97.8 at all protocol types.
Flow reliability R | =N s/N t, where N s represents the
number of successfully completed message exchanges
and N t is the total number of transmissions, continued
to stay stable at 0.97 even in congestion. All these
measures affirm that the proposed passive model is
appropriate in the time-sensitive loT communication
setting.

REesuLTs AND DiscussionN

The quality of ANMF was compared to three benchmark
strategies including: (i) a fixed-point detector, (ii)
a trained random-forest classifier, and (iii) a deep
autoencoder network. Measurements of evaluation
were accuracy of detection, false-positive rate,
processing latency and scalability.

Quantitative Results

The comparative results are summarized in table 1. The
resultant ANMF was found to have a mean detection
rate of 92.1 %which was better than the static and
supervised methods by 7% and 3 % respectively. False-
positive was restricted to 4.2 % which explains the
advantage of adaptive modelling.

Table 2 will provide a summary of the extended
communication performance measures used in the
large-scale testbed experiments that 1 200 loT devices
were implemented with mixed MQTT, CoAP, and AMQP
traffic. The given framework delivered a very high

Table 1. Comparative performance analysis of the proposed framework and existing monitoring methods.

Detection False Positive Processing Processing Scalability
Method Accuracy (%) Rate (%) Latency (ms) Latency (ms) (devices)
Static Threshold 85.1 9.3 2.5 2.5 500
Random Forest 89.3 6.7 5.2 5.2 700
Autoencoder 90.1 5.8 8.6 8.6 900
ANMF (Proposed) | 92.1 4.2 2.8 2.8 1,200
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Table 2: Extended Communication
Performance Metrics

Metric MQTT | CoAP AMQP | Average
Packet Delivery 98.1 97.5 97.9 97.8
Ratio (%)

Mean Jitter (ms) | 1.2 1.4 1.5 1.37
Throughput (kbps) | 128 121 125 124.7
Reliability Index | 0.981 0.974 0.978 0.978
(R

Detection 93.1 92.6 92.4 92.7
Sensitivity (%)

Packet Delivery Ratio (around 97.8%), and low jitter
(less than 1.5 ms) irrespective of the protocol type,
which proves the presence of the stable temporal
behaviour under the changing load. The Throughput
was 124.7 kbps with an efficient channel utilization
without channel degradation caused by congestions.
Reliability Index (R ), which is the successful
completions of messages, stayed above 0.97, which
implies that there is strong end-to-end delivery
integrity. Moreover, Detection Sensitivity was greater
than 92 % which indicates the framework is effective
in detecting communication anomalies without
affecting real-time responsiveness. All these findings
confirm the effectiveness and protocol-independent
scalability of the adaptive model in non-homogeneous
loT settings.
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Fig. 2: Comparative Communication Performance
Across IoT Protocols

The comparison of the effectiveness of the
suggested adaptive monitoring structure with three
leading loT communication protocols, including MQTT,
CoAP, and AMQP, is presented in Figure 2. To provide
consistency with the same network conditions,
the analysis is done in terms of five important
communication metrics Packet Delivery Ratio, Mean

Jitter, Throughput, Reliability Index, and Detection
Sensitivity. The findings indicate that the framework
has almost homogenous efficiency of all protocols
with Packet Delivery Ratio of over 97% and Detection
Sensitivity of over 92% with Mean Jitter of less than 1.5
ms, which denotes temporal stability. The low inter-
protocol difference (within the range of +1) proves
that the adaptive model has protocol-independent
performance, i. e. it acts with throughput, reliability,
and responsiveness in heterogeneous loT conditions.

Figure 3 shows the trends of the detection accuracy
of the system with the increase in the number of
devices monitored between 100 to 1,200. The curve
is stable with deviation of less than 1.5, which means
that it is scalable linearly with higher load and able to
withstand.
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Fig. 3: Detection accuracy vs. device scalability for
the proposed ANMF and baseline methods.

Analytical Discussion

The findings point out that flow-level features
passive monitoring is efficient and accurate in the
analysis of loT traffic. ANMF automatically adapts
online by continuous statistical feedback as opposed
to supervised models which require retraining on
new protocols. Its time drift correlation engine is
good at distinguishing between legitimate device
behavior drift and actual anomaly, reducing the
false alarms. One of the benefits that have been
witnessed in testing is protocol independence. The
anomalies found in the same model described the
keep-alive messages in MQTT, the retransmissions
in CoAP and the saturation of AMQP queue without
the use of protocol-specific rules. This fact confirms
the protocol-agnostic flexibility of the framework.
Latency tests prove it is fit to be deployed in real-
time. The end-to-end processing delays even with the
1,200 devices were less than 3 ms, which makes the
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system compatible with time-sensitive loT systems,
including industrial sensors and smart grids. With the
modular design, the scaling can be extended further
with distributed edge collectors, which then makes
localized inference with a centralized aggregation.
The experimental results prove that ANMF does not
only increase detection accuracy, but also reduces
network footprint because ANMF is entirely based on
mirrored traffic. The use of network bandwidth went
down by 12 % when compared with active probes,
highlighting the advantages of active observation. The
experimentally observed stability of varying protocol
behaviors can be based on a theoretically modelled
communication-level adaptive response function.

A(t)=au “« e-B"“\At-/.l\+le

In which At is the variation in the inter-packet timing,
g will be its mean, and is the reliability index.
Parameters were empirically adjusted to 0.6, 0.12 and
0.3 respectively and the convergence of the anomaly
confidence with less than 2 percent variance between
iterations was achieved. The stability of the adaptive
rule of update and the relationship between statistical
learning and underlying communication dynamics are
validated in this analytical fit.
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Fig. 4: Detection accuracy trend with increasing num-
ber of IoT devices for different monitoring methods.
The figure demonstrates the trend of detection
accuracy when there is an increment of the number
of IoT devices, 100 to 1,200. The accuracy of the
proposed ANMF method is constantly large (more
than 91 %) with few variations, but Random Forest,
Autoencoder, and Static Threshold exhibit returns to
the accuracy drop with the increase in device densi-
ty. This shows that adaptive learning mechanism in
ANMF is an effective feature in reducing degradation
in scalability, thus maintaining stable performance
of the system over large-scale heterogeneous IoT
implementations.

CONCLUSION

This paper proposed a Adaptive Network Monitoring
Framework (ANMF) to heterogeneous internet of
things communication protocols that uses passive
measurements, temporal correlation and behavioral
profiling of devices to detect anomalies at a scale
and protocol-agnostic manner. The framework proved
to be better in terms of accuracy (92 %), low false
positives (4.2) and under 3 ms latency which satisfies
real-time monitoring needs.

The study is a step in the right direction as far as
developing autonomous and adaptive intelligence of
network of 10T is concerned. It has a modular, protocol-
independent architecture that is useful in practise in
large-scale smart environments, in industrial Internet
of Things implementations, and in intelligent intrusion
prevention systems.

Deep federated learning in future work will be
used to better adapt to the geographically distributed
nodes and lightweight on-device analytics applied
to energy-constrained sensors. Privacy-sensitive
blockchain audit trails would also serve to enhance the
integrity of the data in decentralized loT ecosystems.
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