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Abstract 
The fast development of heterogeneous Internet of Things (IoT) ecosystems 
has turned real-time network monitoring into a necessary element to be 
taken into consideration to guarantee reliability and security. In this paper, 
a flexible monitoring system is described that uses passive metering meth-
ods to examine communication protocols like MQTT, CoAP and AMQP in large 
internet of things implementation. The framework has applied flow level 
metadata, time based correlation, and profiling of devices to identify anom-
alies without probing. Experimental testing of 1,200 IoT devices incorporates 
92 percent accuracy in detecting the aberrant behaviour and protocol abuse. 
The presented solution offers a protocol-agnostic network intelligence base 
and enables the following-generation IoT traffic auditing and intrusion pre-
vention system.
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Introduction

The advent of the Internet of Things (IoT) has 
united billions of electronics with the lightweight 
communication framework, including Message 
queuing Telemetry Transport (MQTT), Constrained 
application protocol (CoAP), and Advanced message 
queuing protocol (AMQP). Although optimised to work 
in low-latency and constrained environments, these 
protocols are very difficult to monitor because they 
are asynchronous and have very different protocols. 
With the proliferation of IoT infrastructures, passive 
and adaptive monitoring has become extremely 
necessary to ensure the integrity of operations and 
their resistance against possible intrusions.[1]

The current IoT monitoring systems have a ten-
dency to use active probing, where artificial traffic or 
periodic polls are exchanged to endpoints, to estimate 
response times and availability. Nevertheless, proactive 
techniques are able to congest limited networks and 
distort actual traffic patterns.[2] On the other hand, pas-
sive measurement methods examine the network flows 
and metadata that already exist without the addition 
of network traffic, thereby maintaining transparency in 
the network and causing limited interference.[3] Passive 
analytics enable persistently viewing the interactions 
of the IoT and therefore detecting anomalies based on 
behavior and assessing the quality adaptively.

Existing studies have paid attention to special-
ized monitoring algorithms of individual protocols.  
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An example is MQTT-based flow inspection of message 
flooding and topic hijacking,[4] and CoAP observation 
models are focused on packet timing and retransmis-
sion detection.[5] These solutions are however, pro-
tocol-specific and would not be able to generalize 
on heterogeneous deployments of the IoT. Scalabil-
ity and interoperability are not possible in the real 
world because of the absence of protocol-agnostic  
structures.

The current advances in machine learning and 
edge analytics have enhanced network monitoring 
intelligence. Statistical learning and flow level 
measures have been combined in works to improve 
traffic classification.[6, 7] However, such structures 
usually need labelled datasets and massive retraining 
to fit the new protocols. As a reaction, metadata 
aggregation-based adaptive monitoring architectures 
with unsupervised learning have become promising 
solutions.[8]

Additional proposals were for protocol parsing 
acceleration using the modular or hardware-based 
network analyzers.[9, 10] Even though these architectures 
recorded efficiency improvements; they were limited 
by protocol dependency. Articles of federated 
analytics applied in IoT anomaly detection have also 
been investigated[11] but synchronization overhead and 
model drift remains an unresolved problem.

IoT node design and energy-efficient networking 
Complementary studies on IoT node design and 
networking favor scalability and sustainability 
requirements. The development of energy-conscious 
routing algorithms,[12] Low -power Internet-of-Things 
node designs,[13] RF energy harvesting systems[14] and 
smarter antenna arrays[15] contribute to a stronger 
base of a healthy IoT infrastructure an indispensable 
prerequisite to network-level monitoring systems like 
the one developed in this paper.

Nevertheless, although significant advances have 
been made, available literature still does not include 
lightweight, passive monitoring framework that would 

be able to adjust according to the heterogeneous IoT 
traffic patterns in real time. This paper fills the said 
gap by introducing an Adaptive Network Monitoring 
Framework (ANMF) based on the utilization of 
flow-level metadata, time correlation, and device 
behavioral modelling to identify anomalies in a variety 
of IoT communication protocols. ANMF is new in that it 
can be generalized over MQTT, CoAP and AMQP without 
reconfiguration or active probing. The objectives of 
the framework are three-fold:
(1) to offer statistical flow modelling-based anomaly 

detection protocol-independent;
(2) to provide scalable and passive monitoring of large 

IoT infrastructures;
(3) to combine temporal and behavioral characteristics 

into one adaptive analytics process.

Methodology
The suggested Adaptive Network Monitoring 
Framework (ANMF) incorporates three functional 
layers, i.e., data acquisition, adaptive analytics, and 
response orchestration. It is designed based on passive 
traffic monitoring and lightweight statistical modelling 
in real-time anomaly detection.

Framework Architecture
As shown in Figure. 1 the architecture starts with a 
Packet Capture Layer (PCL) which reflects network 
traffic on IoT gateways and routers either through 
SPAN or NetFlow. This layer uses packet header, 
flow timestamps and payload metadata and removes 
sensitive data to ensure privacy. The metadata is 
standardized to a format with 32 flow characteristics 
that consist of protocol identifiers, source/destination 
pairs, message sizes, and inter-packet delays.

Adaptive Analytics Layer (AAL) utilizes two 
modules. The Temporal Correlation Engine (TCE) that 
comes first is a model that flows timing patterns at the 
flow level based on exponentially weighted moving 
averages (EWMA) to identify anomalies in periodic 

Fig. 1: Architecture of the proposed Adaptive Network Monitoring Framework (ANMF) showing the three 
major layers: data acquisition, adaptive analytics, and response orchestration.
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communication. Second, a statistical fingerprint of 
every device is constructed by the Device Behavior 
Profiler (DBP) which captures long-term characteristics 
like mean packet size and burst frequency. The TCE 
and DBP can be used to detect an anomaly when the 
behavioral vectors surpass pre-established Mahalanobis 
distance thresholds.

Algorithmic Workflow
The algorithm works in the following way:

1.	 Flow Aggregation: Raw packets streams are 
aggregated into flows depending on 5-tuple keys 
(IP source/destination, port, and protocol).

2.	 Features Extraction Temporal features (Δt), 
spatial features (src/dst frequency) and statistical 
features (entropy, packet length variance) are 
extracted.

3.	 Adaptive Modelling: The adaptive modelling is 
a base behaviour model  is, which is trained on 
normal operation data through Gaussian mixture 
modelling. The probability of a given incoming 
flow  given is was computed.

4.	 Decision of Anomaly: In case , and theta is a 
confidence level based on historical variance, the 
flow is considered anomalous.

5.	 Adaptation of feedback: The anomalous samples 
are reexamined and upon confirmation of being 
benign they are included in  to learn incrementally.

Mathematically the adaptive update rule can be 
represented as:

	 	

In which η is the learning rate (0.05=0.1), which requires 
delicate adaptation to acceptable behavioral drift.

Implementation Details
Python 3.11 with the Scapy library and Pandas library 
to parsing and analyze data were used to implement 

the prototype. Traffic information was obtained on a 
testbed of 1,200 IoT devices deployed in 50 gateways. 
Eclipse Mosquitto and libcoap were used to simulate 
MQTT, CoAP and AMQP communications. The system 
was implemented on a 16 core Intel Xeon server 
with 64GB RAM, with real time throughput of about 
25000 packets / s with a latency of less than 3 ms 
per classification. Besides throughput and latency, 
the framework was tested on the ratio of the packet 
delivery (PDR), jitter and the reliability of the flows 
at different network loads. The measured jitter was 
less than 1.5 ms at a mean flow rate of 25 k packets/s, 
and PDR was more than 97.8 at all protocol types. 
Flow reliability R l =N s/N t, where N s represents the 
number of successfully completed message exchanges 
and N t is the total number of transmissions, continued 
to stay stable at 0.97 even in congestion. All these 
measures affirm that the proposed passive model is 
appropriate in the time-sensitive IoT communication 
setting.

Results and Discussion
The quality of ANMF was compared to three benchmark 
strategies including: (i) a fixed-point detector, (ii) 
a trained random-forest classifier, and (iii) a deep 
autoencoder network. Measurements of evaluation 
were accuracy of detection, false-positive rate, 
processing latency and scalability.

Quantitative Results
The comparative results are summarized in table 1. The 
resultant ANMF was found to have a mean detection 
rate of 92.1 %which was better than the static and 
supervised methods by 7% and 3 % respectively. False-
positive was restricted to 4.2 % which explains the 
advantage of adaptive modelling.

Table 2 will provide a summary of the extended 
communication performance measures used in the 
large-scale testbed experiments that 1 200 IoT devices 
were implemented with mixed MQTT, CoAP, and AMQP 
traffic. The given framework delivered a very high 

Table 1. Comparative performance analysis of the proposed framework and existing monitoring methods.

Method
Detection 

Accuracy (%)
False Positive 

Rate (%)
Processing 

Latency (ms)
Processing 

Latency (ms)
Scalability 
(devices)

Static Threshold 85.1 9.3 2.5 2.5 500

Random Forest 89.3 6.7 5.2 5.2 700

Autoencoder 90.1 5.8 8.6 8.6 900

ANMF (Proposed) 92.1 4.2 2.8 2.8 1,200
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Packet Delivery Ratio (around 97.8%), and low jitter 
(less than 1.5 ms) irrespective of the protocol type, 
which proves the presence of the stable temporal 
behaviour under the changing load. The Throughput 
was 124.7 kbps with an efficient channel utilization 
without channel degradation caused by congestions. 
Reliability Index (R l ), which is the successful 
completions of messages, stayed above 0.97, which 
implies that there is strong end-to-end delivery 
integrity. Moreover, Detection Sensitivity was greater 
than 92 % which indicates the framework is effective 
in detecting communication anomalies without 
affecting real-time responsiveness. All these findings 
confirm the effectiveness and protocol-independent 
scalability of the adaptive model in non-homogeneous 
IoT settings.

Fig. 2: Comparative Communication Performance 
Across IoT Protocols

The comparison of the effectiveness of the 
suggested adaptive monitoring structure with three 
leading IoT communication protocols, including MQTT, 
CoAP, and AMQP, is presented in Figure 2. To provide 
consistency with the same network conditions, 
the analysis is done in terms of five important 
communication metrics Packet Delivery Ratio, Mean 

Jitter, Throughput, Reliability Index, and Detection 
Sensitivity. The findings indicate that the framework 
has almost homogenous efficiency of all protocols 
with Packet Delivery Ratio of over 97% and Detection 
Sensitivity of over 92% with Mean Jitter of less than 1.5 
ms, which denotes temporal stability. The low inter-
protocol difference (within the range of ±1) proves 
that the adaptive model has protocol-independent 
performance, i. e. it acts with throughput, reliability, 
and responsiveness in heterogeneous IoT conditions.

Figure 3 shows the trends of the detection accuracy 
of the system with the increase in the number of 
devices monitored between 100 to 1,200. The curve 
is stable with deviation of less than 1.5, which means 
that it is scalable linearly with higher load and able to 
withstand.

Fig. 3: Detection accuracy vs. device scalability for 
the proposed ANMF and baseline methods.

Analytical Discussion
The findings point out that flow-level features 
passive monitoring is efficient and accurate in the 
analysis of IoT traffic. ANMF automatically adapts 
online by continuous statistical feedback as opposed 
to supervised models which require retraining on 
new protocols. Its time drift correlation engine is 
good at distinguishing between legitimate device 
behavior drift and actual anomaly, reducing the 
false alarms. One of the benefits that have been 
witnessed in testing is protocol independence. The 
anomalies found in the same model described the 
keep-alive messages in MQTT, the retransmissions 
in CoAP and the saturation of AMQP queue without 
the use of protocol-specific rules. This fact confirms 
the protocol-agnostic flexibility of the framework. 
Latency tests prove it is fit to be deployed in real-
time. The end-to-end processing delays even with the 
1,200 devices were less than 3 ms, which makes the 

Table 2: Extended Communication  
Performance Metrics

Metric MQTT CoAP AMQP Average

Packet Delivery 
Ratio (%)

98.1 97.5 97.9 97.8

Mean Jitter (ms) 1.2 1.4 1.5 1.37

Throughput (kbps) 128 121 125 124.7

Reliability Index 
(R_l)

0.981 0.974 0.978 0.978

Detection 
Sensitivity (%)

93.1 92.6 92.4 92.7
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system compatible with time-sensitive IoT systems, 
including industrial sensors and smart grids. With the 
modular design, the scaling can be extended further 
with distributed edge collectors, which then makes 
localized inference with a centralized aggregation. 
The experimental results prove that ANMF does not 
only increase detection accuracy, but also reduces 
network footprint because ANMF is entirely based on 
mirrored traffic. The use of network bandwidth went 
down by 12 %  when compared with active probes, 
highlighting the advantages of active observation. The 
experimentally observed stability of varying protocol 
behaviors can be based on a theoretically modelled 
communication-level adaptive response function.

	 A(t)=α” “ e-β” “∣Δt-μ∣+γRl	

In which Δt is the variation in the inter-packet timing, 
μ will be its mean, and  is the reliability index. 
Parameters  were empirically adjusted to 0.6, 0.12 and 
0.3 respectively and the convergence of the anomaly 
confidence with less than 2 percent variance between 
iterations was achieved. The stability of the adaptive 
rule of update and the relationship between statistical 
learning and underlying communication dynamics are 
validated in this analytical fit.

Fig. 4: Detection accuracy trend with increasing num-
ber of IoT devices for different monitoring methods. 

The figure demonstrates the trend of detection 
accuracy when there is an increment of the number 

of IoT devices, 100 to 1,200. The accuracy of the 
proposed ANMF method is constantly large (more 

than 91 %) with few variations, but Random Forest, 
Autoencoder, and Static Threshold exhibit returns to 
the accuracy drop with the increase in device densi-
ty. This shows that adaptive learning mechanism in 

ANMF is an effective feature in reducing degradation 
in scalability, thus maintaining stable performance 
of the system over large-scale heterogeneous IoT 

implementations.

Conclusion
This paper proposed a Adaptive Network Monitoring 
Framework (ANMF) to heterogeneous internet of 
things communication protocols that uses passive 
measurements, temporal correlation and behavioral 
profiling of devices to detect anomalies at a scale 
and protocol-agnostic manner. The framework proved 
to be better in terms of accuracy (92 %), low false 
positives (4.2) and under 3 ms latency which satisfies 
real-time monitoring needs.

The study is a step in the right direction as far as 
developing autonomous and adaptive intelligence of 
network of IoT is concerned. It has a modular, protocol-
independent architecture that is useful in practise in 
large-scale smart environments, in industrial Internet 
of Things implementations, and in intelligent intrusion 
prevention systems.

Deep federated learning in future work will be 
used to better adapt to the geographically distributed 
nodes and lightweight on-device analytics applied 
to energy-constrained sensors. Privacy-sensitive 
blockchain audit trails would also serve to enhance the 
integrity of the data in decentralized IoT ecosystems.
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