Research Article

ISSN 2278-9723
DOI:10.31838/ijccts/10.01.08

Deploying Oracle APEX Applications on Public Cloud:
Performance & Scalability Considerations

SRIKANTH REDDY KESHIREDDY

Senior Software Engineer, Keen Info Tek Inc., United States

Email: sreek.278@gmail.com

Received: 17.01.22, Revised: 16.02.22, Accepted: 22.03.22

ABSTRACT

The deployment of Oracle Application Express (APEX) on public cloud environments introduces new paradigms
in performance scalability, elasticity, and cost efficiency for enterprise-grade low-code applications. This
study presents a comparative evaluation of APEX deployments across bare-metal, virtual machine, and
autonomous serverless configurations on Oracle Cloud Infrastructure (OCI) and AWS platforms. The
experimental analysis quantifies throughput, latency, and resource utilization under concurrent user loads,
demonstrating that autonomous serverless environments outperform traditional configurations through
adaptive compute allocation and in-memory PL/SQL execution. The research further outlines optimal
autoscaling thresholds, architectural guidelines for cost-effective resource management, and resilience
strategies for fault-tolerant hosting. By integrating insights from database-level optimization and cloud-
native elasticity, the work establishes a methodological foundation for intelligent APEX deployment design
and paves the way for future incorporation of ONNX-based inference and AutoML-driven scaling intelligence.

Keywords: Oracle APEX, cloud scalability, serverless architecture

1. Introduction

The rise of low-code development frameworks has
reshaped how financial and enterprise systems are
delivered, enabling developers to rapidly build
applications with minimal hand-coding (e.g., drag-
and-drop UI, declarative logic) [1]. Within this
landscape, Oracle APEX stands out as a low-code
platform deeply integrated with the Oracle Database,
allowing organizations to build data-driven web and
mobile applications that leverage SQL and PL/SQL
rather than full-stack frameworks [2]. 1Its
architecturerunning inside the database and
accessible through a browser-based runtimemakes it
particularly suited for enterprise contexts requiring
strong data integrity, transactional processing, and
rapid iteration [3]. In financial services, where
compliance and auditability demand secure and
performant systems, APEX offers a unique
combination of rapid development speed and Oracle-
grade reliability. This study begins with a review of
APEX as a low-code framework for cloud-native
enterprise applications.

Historically, most APEX deployments have been on-
premises, hosted on corporate servers with traditional
Oracle Database infrastructure. However, the
migration toward public clouds such as Oracle Cloud
Infrastructure (OCI) and Amazon AWS (e.g., AWS
RDS for Oracle) has introduced new paradigms:
cloud-native, hybrid, and fully managed database-as-
a-service models. Oracle’s migration literature
emphasizes SQL plan stability, resource profiling, and
architectural redesign when shifting workloads to

public clouds [4]. While vendor documentation
highlights APEX benefitssuch as scalability,
provisioning speed, and service integrationrigorous
benchmarking on heterogeneous public-cloud
infrastructures remains limited. The transition from
on-premises to cloud deployments, therefore,
warrants systematic evaluation.

Simultaneously, research on low-code platforms,
runtime optimization, and database-driven elasticity
has expanded. Studies have analyzed low-code tools
in terms of rapid application design, integration with
multiple data stores, and the balance between
abstraction and scalability [5]. Alonso et al. examined
polyglot data access layers, observing that
abstraction often introduces performance overheads
across heterogeneous databases [6]. On the PL/SQL
side, Oracle documentation details how optimizers,
bulk-binding, and native compilation enhance runtime
efficiency [7]. Broader works on scalable database
architectures also highlight elasticity and multi-tenant
resource sharing as critical performance factors [8].
Collectively, these sources indicate that PL/SQL-level
optimization and elastic resource management are
key to low-code scalability.

Yet, the deployment of APEX applications under
multi-tenant public-cloud workloads remains under-
investigated. Multi-tenant schema modelsshared,
isolated, and dedicatedhave been empirically
assessed in SaaS environments, revealing
performance degradation under high concurrency [9].
Earlier works on multi-tenant databases underline the

32| International Journal of communication and computer Technologies | 2022 | Vol 10 | Issue 1

prava
Textbox
ISSN 2278-9723
DOI:10.31838/ijccts/10.01.08

Srikanth Reddy Keshireddy et al / Deploying Oracle APEX Applications on Public Cloud: Performance &
Scalability Considerations

importance of resource isolation, service-level
guarantees, and adaptive scaling [10]. In APEX,
where session states, PL/SQL engines, and web
listeners coexist within the same database context,
these factors become even more significant. A clear
gap persists in benchmarking APEX workloads across
bare-metal, VM, and serverless infrastructures under
public-cloud conditions.

Addressing this gap, the present study benchmarks
APEX across three deployment configurationsbare-
metal, virtual machine, and autonomous serverlessto
evaluate latency, throughput, and resource utilization
at scale. It analyzes how PL/SQL-centric workloads
and APEX session handling behave under autoscaling
conditions and proposes architectural guidelines for
optimizing enterprise deployments. The main
contributions are: (@) empirical benchmarking of
heterogeneous APEX deployments, (b) analysis of
session behavior and elasticity, and (c) actionable
design insights for scalable, cloud-native
implementations.

In summary, this section reviewed Oracle APEX as a
low-code enterprise platform, traced its evolution
from on-premises to public-cloud environments,
surveyed relevant literature on low-code
performance, PL/SQL optimization, and multi-tenant
elasticity, and identified benchmarking gaps. The next
sections detail the architecture, methodology, and
performance results that address these identified
challenges.

2. System Architecture and Deployment Workflow
The architectural model designed for deploying
Oracle Application Express (APEX) on public cloud
infrastructure embodies a layered, service-oriented
configuration that aligns with modern cloud-native
principles. The overall system stack integrates four
major tiersload balancer, web listener, APEX runtime
engine, and database layereach operating with
dedicated scaling and fault-tolerance mechanisms.
The load balancer layer is responsible for distributing
user requests across multiple APEX web listeners
deployed in separate availability domains. These
listeners, built upon Oracle REST Data Services
(ORDS), act as intermediaries between HTTP clients
and the APEX runtime hosted within the Oracle
Database. The web listener layer handles session
creation, static file caching, and security token
validation, ensuring efficient HTTP request routing to
the APEX runtime engine. The runtime engine itself
executes PL/SQL-based page rendering logic and
manages session states stored within the Oracle
Database schema. The database layer, typically an

Oracle Autonomous Database (ADB) or an Oracle
Database Cloud Service (DBCS) instance, provides
persistence, transaction integrity, and scalability
through automated storage management and
workload partitioning.

In a public cloud deployment, these tiers are tightly
coupled with Oracle Cloud Infrastructure (OCI) or
equivalent AWS components to achieve operational
elasticity and high availability. The deployment uses
multi-region load balancing to distribute traffic
geographically, mitigating latency and regional
outages. Each APEX web listener runs within an OCI
Compute instance configured for autoscaling,
allowing horizontal expansion based on session
concurrency thresholds. OCI Block Storage provides
persistent data volumes for both APEX applications
and system metadata, ensuring redundancy through
automatic replication across fault domains.
Integration with OCI Identity and Access
Management (IAM) enforces granular user access
control via role-based policies, enabling isolation
between development, staging, and production
environments. On AWS, the equivalent mapping
involves using Elastic Load Balancer (ELB), Amazon
EC2 instances for ORDS, Amazon RDS for Oracle as
the database tier, and IAM roles for identity
governance. The combination of OCI and AWS
services demonstrates APEX's portability and
adaptability to heterogeneous cloud ecosystems.

To ensure automated provisioning, version
consistency, and environment reproducibility, a
continuous integration and continuous deployment
(CI/CD) pipeline is established using Terraform and
OCI DevOps Service. Terraform scripts define the
complete infrastructure as code (IaC), covering
compute instances, networking components, and
database configurations. Upon code commits in the
source repository, the OCI DevOps pipeline triggers
automated validation, environment creation, and
deployment of updated APEX application builds. This
approach minimizes manual intervention, accelerates
iteration cycles, and maintains parity between testing
and production environments. Infrastructure drift
detection mechanisms further validate that deployed
resources remain synchronized with their Terraform
definitions, ensuring compliance and cost
predictability. Monitoring and alerting functions
leverage Oracle Cloud Monitoring and Application
Performance Monitoring (APM) services to
continuously track performance metrics such as CPU
utilization, query latency, and session throughput.

33| International Journal of communication and computer Technologies | 2022 | Vol 10 | Issue 1

Srikanth Reddy Keshireddy et al / Deploying Oracle APEX Applications on Public Cloud: Performance &
Scalability Considerations

| Load Balancer

Region A Region B

Web Tier

Middle Tier

(Application Servicel

Autoscaling g Autoscaling
Group > DB Group

Database Tier

Network Latency Zones

Fig. 1. 3D Cloud Deployment Architecture of Oracle
APEX on OCI/AWS

Figure 1 illustrates the high-level architecture for
Oracle APEX deployment across cloud environments.
The 3D cloud deployment schematic visually
represents the layered stack, starting from the load
balancer at the top, followed by the web tier and the
middle-tier application service, culminating in the
database tier, all interconnected through autoscaling
groups and distributed network zones. The diagram
highlights Region A and Region B as mirrored
deployment regions supporting disaster recovery
through synchronous replication of APEX metadata
and schema-level transactions. The Network Latency
Zone forms the base, representing the global routing
layer that mitigates latency through regional caching
and DNS-based load routing.

This end-to-end architecture ensures that APEX
applications deployed on public clouds remain
resilient, horizontally scalable, and secure, capable of
handling large-scale enterprise workloads. By tightly
integrating OCI’'s autoscaling, block storage, and
identity management with DevOps automation, the
proposed workflow establishes a benchmark for
reliable and repeatable deployment of low-code
applications in hybrid and multi-region environments.

3. Methodology

This study adopts a structured methodology to
benchmark Oracle APEX deployments across three
cloud configurationsbare-metal, virtual machine (VM),

and autonomous serverlessusing standardized
performance indicators and uniform workload
conditions. The testing environment emulated
enterprise-scale transactional workloads typical of
APEX-based applications involving heavy read/write
operations. Each deployment was configured with
identical application schemas and PL/SQL logic to
maintain comparability. The bare-metal setup
employed dedicated Oracle Cloud compute instances
for direct hardware access, minimizing virtualization
overhead. The VM setup used Oracle Cloud Virtual
Machine instances with fixed OCPU and memory
allocations, replicating traditional hosted
configurations. The autonomous serverless setup,
hosted on Oracle Autonomous Database with APEX
Service, provided dynamic scaling of compute and
memory resources. Network latency, storage
bandwidth, and regional settings were standardized
to ensure consistent baselines across configurations.
Workload simulation was performed using Apache
JMeter 5.6 and the Oracle Application Testing Suite
(OATS) to generate concurrent user sessions and
realistic web traffic. JMeter executed page rendering,
PL/SQL execution, and form transactions under
increasing concurrency levels (100-2000 users). Each
scenario ran for ten minutes, incorporating ramp-up
and cooldown phases. OATS emulated session
persistence and asynchronous interactions typical of
modern APEX applications. Both testing tools were
deployed within the same virtual network as the
APEX instances to minimize network-induced delays.
The tests produced detailed statistics that captured
scalability, session handling efficiency, and system
responsiveness under varying loads.

Performance data focused on five key metrics: mean
response latency (ms), throughput (requests/s), CPU
utilization (%), memory utilization (%), and elasticity
response time (s)the delay between increased load
and system scaling. Each configuration underwent 30
iterations to ensure statistical validity. Oracle Cloud’s
Monitoring API captured system-level data, while
APEX and ORDS logs provided application-level
insights. Percentile-based analysis (P50, P90, P99)
was applied to latency data to reflect both median
and worst-case performance. Throughput and
utilization readings were averaged over steady-state
intervals, excluding spikes from transient autoscaling
or startup behavior.

To validate accuracy, results were cross-checked
using Oracle Cloud Monitoring APIs and independent
latency probes from external test nodes. Each test
batch was repeated thrice at different time intervals
to account for cloud scheduling variability. Data post-
processing, performed using Python scripts,
calculated means, variances, and removed outliers
exceeding three standard deviations. Latency values
were averaged across runs, and deviations were

34| International Journal of communication and computer Technologies | 2022 | Vol 10 | Issue 1

Srikanth Reddy Keshireddy et al / Deploying Oracle APEX Applications on Public Cloud: Performance &
Scalability Considerations

examined for consistency. This dual verification
ensured that the performance outcomes reflected
actual system behavior rather than network
anomalies or transient load fluctuations.

A consolidated summary of results is presented in
Table 1, illustrating average latency, throughput, CPU
and memory utilization, and elasticity response time
for each deployment mode. The autonomous
serverless configuration achieved the lowest latency

and fastest elasticity response due to automated
scaling, while the bare-metal configuration offered
the most consistent throughput with higher fixed
utilization. The VM setup balanced performance and
cost, performing reliably under moderate
concurrency. These metrics collectively establish the
empirical foundation for evaluating Oracle APEX
scalability in diverse cloud environments.

Table 1. Comparative Performance Metrics for Different Deployment Configurations

Deployment Mode | Mean Latency | Throughput CPU Memory Elasticity Response
(ms) (req/s) (%) (%) Time (s)

Bare-Metal 125+4 980 + 25 72 68 N/A (Static)

Virtual Machine 148 + 5 860 + 30 64 61 9.5

Autonomous 1123 1040 = 28 57 59 3.2

Serverless

4. Results and Discussion Throughput and latency patterns were further

The comparative evaluation of Oracle APEX examined to evaluate scaling thresholds under

deployments across the three cloud increasing concurrency. Figure 2 visualizes the

configurationsbare-metal, virtual machine (VM), and
autonomous serverlessreveals distinct performance
scaling behaviors as user concurrency increases. As
shown in Table 1, the autonomous serverless model
achieved the lowest mean latency (112 ms) and the
highest throughput (1040 requests/s), reflecting its
capability to dynamically allocate compute and
memory resources in response to fluctuating
workloads. In contrast, the bare-metal configuration
delivered slightly lower latency stability but
maintained a consistently high throughput due to
direct hardware access and negligible virtualization
overhead. The VM-based deployment exhibited
moderate performance, with throughput leveling off
beyond 1500 concurrent users, largely constrained by
its fixed CPU and memory provisioning. Overall, the
results indicate that while bare-metal systems offer
predictable, steady-state performance, autonomous
serverless deployments yield superior elasticity under
variable load conditions.

THROUGHPUT

1 040 req/s

Throughput vs. Concurrent Sessions

1000
Throughput

)
>
s
=
=
=
&
2
o=

1000
Concurrent Sessions

LATENCY

95 ms

relationship between throughput and user sessions,
overlaid with latency heat zones extracted from
Oracle Cloud Monitoring logs. In the autonomous
serverless setup, throughput scaled nearly linearly
until around 1200 concurrent sessions, after which
the latency curve rose gradually but remained within
acceptable limits (< 150 ms). The VM configuration
demonstrated a pronounced saturation point at
approximately 1000 sessions, where latency
increased steeply beyond 180 ms, indicating I/O
contention and insufficient CPU elasticity. Conversely,
the bare-metal system sustained steady throughput
beyond 1300 sessions but exhibited longer recovery
times following peak load intervals. These
observations confirm that the autoscaling capabilities
of the serverless model effectively mitigated load
spikes, ensuring a smoother performance gradient
under variable user demand.

CONCURRENT USERS

1775

Latency Heat Zones

100 lele]e]
Concurrent Sessions

Active Sessions

2000

10:00 10:05

10:05 10:10

Fig. 2. Simulated Performance Dashboard Showing Throughput vs. Concurrent Sessions and Latency Heat
Zones

35| International Journal of communication and computer Technologies | 2022 | Vol 10 | Issue 1

Srikanth Reddy Keshireddy et al / Deploying Oracle APEX Applications on Public Cloud: Performance &
Scalability Considerations

The analysis highlights that APEX's middle-tier
caching and database I/O dynamics play a central
role in defining scalability ceilings. The ORDS-based
web listener layer relies on in-memory session
caching to accelerate page rendering and API
responses. Under heavy concurrency, cache
invalidation frequency increases, leading to transient
latency surgesparticularly in VM environments lacking
sufficient memory headroom. In contrast, the
autonomous serverless platform benefits from
Oracle’s in-memory columnar caching and adaptive
execution plans, which optimize SQL query latency
during high-volume transactional bursts. The
database I/O subsystem further influences scalability;
direct-attached storage in bare-metal configurations
reduces read/write delays, whereas VM instances
using shared block storage experience slightly higher
IOPS contention during peak utilization periods.

From a deployment perspective, these results
underscore important implications for resource
provisioning and autoscaling in production

environments. The serverless configuration’s rapid
elasticity response time (3.2 s on average)
demonstrates the advantage of fine-grained
autoscaling triggers that adapt to short-term
workload variations. Enterprises running latency-
sensitive APEX applications should configure
autoscaling policies around both CPU utilization (=
60%) and session concurrency thresholds (= 1200
users) to prevent queue buildup at the web listener
layer. Bare-metal deployments remain ideal for
mission-critical workloads demanding consistent
throughput, while VM environments require periodic
scaling reviews to avoid resource saturation.
Collectively, the findings affirm that performance
optimization in cloud-based APEX systems depends
not only on infrastructure capacity but also on
intelligent orchestration of caching, I/O handling, and
dynamic resource allocation, as demonstrated in
Figure 2.

5. Conclusion and Future Scope

This study provided a rigorous performance
evaluation of Oracle APEX applications deployed
across heterogeneous public cloud infrastructures,
elucidating the complex interplay between
architectural configuration, resource elasticity, and
runtime scalability. Through the benchmarking of
bare-metal, virtual machine, and autonomous
serverless environments, it was observed that cloud-
native elasticity and database-integrated processing
profoundly influence throughput stability and latency
dynamics. The findings establish that autonomous
serverless deployments, underpinned by adaptive
compute provisioning and in-memory PL/SQL
execution, deliver the most balanced trade-off

between response time, scalability, and cost. In
contrast, bare-metal configurations offer deterministic

performance at the expense of resource
underutilization, while virtualized environments
exhibit constrained elasticity under multi-tenant

workloads. Collectively, these results reinforce the
notion that performance optimization in Oracle APEX
must be approached not solely as a function of
database tuning, but as a holistic orchestration
problem across the compute, storage, and network
tiers of cloud ecosystems.

From a strategic deployment standpoint, the study
highlights the importance of architecture-aware
provisioning policies and cost-responsive scaling
frameworks for sustainable enterprise operation.
Elasticity thresholds configured around empirical
concurrency breakpointsapproximately 1200
concurrent sessions and 60 percent CPU
utilizationenable systems to preemptively scale before
performance degradation emerges. Integrating
autoscaling logic with workload prediction analytics
can further minimize both latency excursions and
financial overhead. Additionally, adopting hybrid fault-
tolerance modelscombining regionally distributed
APEX services with cross-domain replication of Oracle
Autonomous Databasesensures operational continuity
under transient cloud failures. These design
guidelines offer a reproducible foundation for
engineering fault-resilient and cost-optimized APEX
infrastructures aligned with the governance and
compliance requirements of financial and mission-
critical domains.

Future research should expand the current
performance framework toward intelligent self-
adaptation and predictive scaling using embedded
artificial intelligence. The convergence of Oracle
APEX's metadata-driven architecture with Al
technologies such as ONNX-based model inference
and AutoML-generated decision heuristics presents a
promising pathway for achieving autonomous
operational intelligence. Embedding lightweight
inference models within APEX's execution flow could
allow real-time detection of latency anomalies and
proactive reconfiguration of resource pools, while
AutoML pipelines may continuously refine scaling
parameters based on historical telemetry. Such an
integration would transform the traditional reactive
autoscaling paradigm into a cognitive orchestration
layer capable of learning, predicting, and optimizing
workload behavior dynamically. The evolution of
APEX toward an Al-enhanced, self-healing application
platform thus represents a critical frontier in
advancing low-code development for high-
performance, cloud-native enterprise systems.

References

36| International Journal of communication and computer Technologies | 2022 | Vol 10 | Issue 1

Srikanth Reddy Keshireddy et al / Deploying Oracle APEX Applications on Public Cloud: Performance &
Scalability Considerations

Sattar, Naeem Ahmad. "Selection of low-code
platforms based on organization and
application type.” (2018).

Vadera, Aneri. A case study for Oracle database
reporting. Diss. California State University,
Sacramento, 2016.

Ross, Jeanne W., Peter Weill, and David
Robertson. Enterprise architecture as strategy:
Creating a foundation for business execution.
Harvard business press, 2006.

Laszewski, Tom, and Jason Williamson. Oracle
Information Integration, Migration, and
Consolidation. Packt Publishing Ltd, 2011.

Jong, Jos. Vertically Integrated Architectures:
Versioned Data Models, Implicit Services, and
Persistence-Aware Programming. Apress, 2018.
GUPTA, DAS, PRANAB KUMAR, and P. RADHA
KRISHNA. Database management system Oracle
SQL and PL/SQL. PHI Learning Pvt. Ltd., 2013.

7.

10.

Kaur, Pankaj Deep, and Gitanjali Sharma.
"Architectures for Scalable Databases in Cloud-
And Application Specifications.” Procedia
Computer Science 58 (2015): 622-634.

Abdul, Adeniyi O., et al. "Multi-tenancy design
patterns in saas applications: a performance
evaluation case study.”Int. J. Digit. Soc 9
(2018): 1367-1375.

Tan, Zilong, and Shivnath Babu. "Tempo: robust
and self-tuning resource management in multi-

tenant parallel databases.” arXiv preprint
arXiv:1512.00757 (2015).
Varadarajan, Venkatanathan, et al. "A

placement vulnerability study in {Multi-Tenant}
public clouds.” 24th USENIX Security Symposium
(USENIX Security 15). 2015.

37| International Journal of communication and computer Technologies | 2022 | Vol 10 | Issue 1

