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AbstrAct 
NeuroMile is an alternatives-based, new AI architecture that combines con-
tinual learning, meta-learning, and dynamic energy optimization to perform 
real-time and accurate inference on markets and end gadgets. Engineered 
to address the resource limitation of embedded and wearable systems, the 
task-aware memory encoder and the adaptive-modulation of inference depth 
and quantization level, NeuroMile has been developed to support a modular-
ized architecture. Such adaptations have dynamic contextual feedback, such 
as battery level, activity and complexity of task.
 Relative evaluations in three edge-related benchmarks, PAMAP2 (human 
activity recognition), EdgeSpeech (voice command recognition), and CI-
FAR-100 (few-shot image classification) show that NeuroMile can reach 88.9% 
at 1.1W power consumption as opposed to the full-precision baseline of 89.6% 
accuracy at 2.8W power consumption. This shows a decrease of 60 percent 
of energy consumed with less than 1 percent loss of accuracy. Besides, Neu-
roMile can train much faster in terms of task-specific fine-tuning, with only 
7.8s required compared to conventional meta-learning baselines, including 
MAML (10.3s) and FedAvg (18.1s).
 These findings put NeuroMile as a feasible and smart edge inference ar-
chitecture that trades-off among accuracy, energy-efficiency, and flexibility. 
It is applicable to mobile robotics, wearable health-monitors, as well as re-
al-time IoT installations. The future work will consist of a federated learning 
to enable edge adaptation to be secretive and reinforcement learning-based 
self-optimizing edge control policies to further enlarge the sustainability and 
personalization aspect in this Computational model.
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IntroductIon

Background and Motivation
The explosive increase in the adoption of edge 
computing has transformed the implementation of 
artificial intelligence (AI) models to latency-sensitive 
and resource-bound settings. Such applications as 
real-time health monitoring, autonomous flying 
vehicles, smart surveillance, and home automation 
are becoming application areas where edge-based 
solutions are more and more predominant to meet 

frequent and localized inference. But the current 
performance of the conventional deep learning (DL) 
models in these environments is low since they have 
a high computational overhead, they do not change 
their learning behavior, and this makes them to rely on 
cloud-based retraining in an attempt to adapt to the 
dynamic conditions.

Edge AI has to work with very limited batteries, 
tight memory, sporadic connections, as well as 
a diverse user base that may have constantly 
changing data distributions. Continuous learning and 
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personalization is no trivial task in the situations like 
these. In addition, edge devices simply have to work 
on their own, adjusting to streaming information with 
low-power usage and minimal latency, which is beyond 
the scope of conventional AI paradigms.

This was changed in the recent progress of 
continual learning (CL) and meta-learning which 
has the ability to modify the models with time and 
various tasks. However, when combined in the edge 
ecosystems, these approaches create new grounds of 
intricacies. In addition, the use of the computationally-
costly replay buffers or parameter regularization 
imposed on most CL techniques, and the rigid energy 
budgets presupposed by meta-learning approaches fail 
to consider the stochastic resource availability of edge 
devices. Therefore, such a more synergistic approach 
is needed the one that will be able to connect the 
abilitotion to personalize to the resilience to task of 
continual learning with strong energy constraints.

Literature Review
There are many methods which have been analyzed 
to expand AI to the edge. Federated Learning (FL)[1, 2]  
was proposed as a privacy preserving paradigm that 
enables training to be done in a decentralised manner 
between devices. Nevertheless, FL is also marred with 
high communication expense and does not provide 
coarse-grained personalization particularly in non-
IID (non-independence and identically distributed) 
settings. The ongoing efforts to address the problem 
of catastrophic forgetting have resulted in several 
learning algorithms, Elastic Weight Consolidation 
(EWC),[3] Memory Aware Synapses (MAS)[4] and Gradient 
Episodic Memory (GEM)[5] among them, but learning 
with these methods can be resource-intensive and thus 
cannot be used in energy-constrained edge devices.

It can be adapted quickly to new tasks with little 
gradient update, which is a desirable attribute when 
used in dynamic edge environments as done by Model-
Agnostic Meta-Learning (MAML)[6] and its adornations. 
However, the existing meta-learning paradigms do not 
explicitly take into account the energy limitations and 
are not continuous adaptation with time. Moreover, 
the majority of the current solutions presuppose 
access to sufficient memory and processing capacity, 
which does not obey limitations in the real world of 
the edge devices.

There have been recent efforts in lightweight 
learning on the edge, such as EdgeDroid[7] and TinyTL,[8]  
both of which progress in lightweight learning on the 

edge but cannot balance personalization, efficiency, 
and adaptability against each other. Custom hardware 
accelerators on the energy-efficient AI inference have 
been explored on the VLSI side. An example is shown 
by Zhou et al., when using FPGA platforms, energy-
aware edge inference techniques accurately and clock 
gating on dynamic workloads.[9] In their turn, Liu et 
al.[10] examine the concept of adaptive compute units 
on ASICs that hopefully make switching between 
depth and quantization modes to save power in real-
time conditions. Furthermore, an energy-efficient 
architecture in the Eyeriss v2[11] is balanced considering 
the aspects of performance and energy-efficient across 
the spatial workloads through reconfiguration.

Such works favel for reinforcement of the emerging 
necessity of hardware-software co-design in edge 
AI but are yet to include meta-learning or continual 
adaptation-related logic. Thus, a long-standing need 
remains an end-to-end architecture that integrates 
energy-awareness, incessant meta-learning, and the 
deployment at the edge integrating the constrained 
environments support in the architecture.

Research Gap
With the increasing study of edge AI and the active 
process of adapting to it, the questions as to its 
critical gaps are still unresolved and can be outlined 
as follows: Failure to adapt to individual behaviors and 
device-specific constraints: Largely this problem has 
its origin in failures of edge models which are usually 
generalized and fail to integrate individual behaviors, 
or to address device-specific constraints.

Lack of energy-awareness: The current systems 
do not observe power constraints, and as a result, 
they become inefficient when there is a resource-
constrained situation.

Inappropriate support to lifelong adaptation: 
Models fail to keep acquired knowledge in their 
memories and still provide support to new tasks. 
Computational intensity and high memory requirement: 
A lot of algorithms are not fine-tuned to use minimal 
resources present on edge devices.

Contributions
In order to fill the above research gaps, the paper 
proposes NeuroMile, a new AI deployment solution 
aiming to be personal, energy-conscious, and 
continuously adaptive end-to-end inference in end 
computing devices. The most important ones include:
Hybrid Learning Framework: To combine both fast 
adaptation and long-term memory retention we 
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suggest the lightweight Edge-compatible continual 
meta-learning architecture we call NeuroMile.

Energy-Aware Controller: A Module of energy 
optimization is designed adaptively regulating learning 
and inference workloads on devices according to 
their power conditions, and able to optimize energy-
accuracy trade-offs.

Task-Context Memory Buffer: A selective memory 
partition is task-monitoring, and it has the capacity to 
store task-relevant episodes in order to easily replay 
the information and minimize catastrophic forgetting 
cases, in addition to having the ability of personalizing 
the system at user-level.

Thorough Analysis: The given framework shows 
the good performance in accuracy, energy costs, 
and model adaptability in comparison with the best 
methods on the benchmark datasets (PAMAP2 on 
activity recognition, CIFAR-100 to test the vision task, 
and the EdgeSpeech to test the audio inference) using 
the proposed framework.

relAted Work
The research on adaptable and resource-efficient 
AI frameworks of an edge context has gained more 
recognition these past years. In this section, the state-of-
the-art approaches are critically reviewed with regards 
to the paradigm of federated learning, meta-learning, 
and continual learning as well as specific attention to 
whether they are suitable in edge deployment.

Federated Learning (FedAvg)
One of the first and also most popular algorithms 
in decentralized learning is Federated Averaging 
(FedAvg).[1] It enables collaborative model training 
on several devices with data privacy since the 
exchange is on the model weight rather than the raw 
data. Nevertheless, FedAvg works under the implicit 
assumption of independence and identical distribution 
(IID) of client data, which is not true in the majority 
of edge applications. Moreover, customization cannot 
be done as much as with the use of the global model, 
and training and inference are not energy-conscious. 
The aggregation process implies the substantial 
(communication) overhead and the model size is not 
quite small, which says nothing about deployment on 
limited devices.

Model-Agnostic Meta-Learning (MAML)
A Model-Agnostic Meta-Learning (MAML) [2] is a 
gradient algorithm that, based on a small number of 

examples, allows fast adaptation to any new tasks. It 
can be applied to non-stationary environments, owing 
to the use of its inner-outer loop optimization, which 
allows its fast generalization. But, in MAML, there 
are no mechanisms of long-term memory retention 
so that it is vulnerable to catastrophic forgetting 
during continuous learning. Also, it is computationally 
expensive in meta-update and does not have energy-
optimization methods, which are barriers to its 
deployment on the resource-constrained edge device.

Elastic Weight Consolidation (EWC)
Elastic Weight Consolidation (EWC) [3] is one of the 
types of regularization-based approaches to continual 
learning. EWC uses the Fisher Information Matrix in 
estimating the importance of each reparameterization 
and penalizes them selectively to encourage the 
parameter adjustment towards small values. Although 
effective at preventing forgetting, the memory 
and computation overhead of EWC scales with the 
number of tasks: it is inappropriate on low-resource 
devices. In addition, EWC cannot use any energy-
awareness mechanism or rapid task adaptation, and 
its performance may decline heavily in non-IID data 
distributions used in the edge.

The Proposed NeuroMile Framework
The major drawbacks of the above methods are 
overcome by the integration of meta-learning and 
continual learning within resource-aware edge 
computing paradigm that is provided by NeuroMile. 
It uses a lightweight architecture with added energy 
optimization module which dynamically scales the 

Table 1: Comparative Analysis of Existing Methods

Feature
Fed-
Avg MAML EWC

NeuroMile 
(Proposed)

Person-
alization

Low Moder-
ate

High High

Con-
tinual 
Learning

No No Yes Yes

Energy 
Optimi-
zation

No No No Yes

Model 
Size

Large Medi-
um

Large Small

Adap-
tation 
Speed

Medi-
um

High Low High
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operations of the models in real-time according to 
available power. Also, it uses a task-context memory 
buffer to selectively store important task information 
in order to enable the model to strike the balance 
between knowledge and rapid personalization. 
Tormented with system-level constraints, unlike EWC 
and MAML, NeuroMile is designed for the edge, which 
makes it neither inefficient nor brittle in a lifelong 
learning setting.

Summary of Insights
Based on the above comparative analysis, it is possible 
to mention some important conclusions:

• The FedAvg has disadvantages in that it lacks 
personalization and has excessive communica-
tion overhead making it not an optimal solu-
tion in personalized edge applications.

• Although MAML is very adaptive, it lacks long-
term knowledge and ignores the scarcity of 
resources and hence it is not sustainable to 
maintain long-term edge deployment.

• EWC proposes memory retention mechanisms 
and is computationally demanding and not 
adaptive to real time edge conditions.

• NeuroMile stands out because it reflects 
the speed of generalization of meta-learn-
ing, memory of continual learning, and con-
text-aware control of energy consumption, 
and thus is the ideal architecture to apply in 
the edge inference and lifelong learning envi-
ronments of constrained resources.

system ArchItecture And ProPosed 
methodology
In this section, the internal design and flow of execution 
of the proposed NeuroMile framework is explained. 
The design of the architecture is meant to tackle 
main limitations of edge computing which include 
limited energy, non-IID data, and personalization. 
The block diagram describing the high level of the 
system is presented in Fig. 1, whereas the role of each 
component is described in Table 2.

Overview of NeuroMile Edge Architecture                                                       
Programming design scalable to adaptive behaviour 
in relation to environmental conditions (e.g. user 
action), system parameters (e.g. battery level) and 
subject to variability in real-time input. NeuroMile 
goes about executing it based on four key elements:

• Edge AI Engine: It is the core of the inference. 
It is based on assembly/disassembly modules 
that can adjust intricacy of computation in 
light of the energy situation in the device.

• Energy Controller: Checks battery level and 
system load of the device, and tunes model 
depth, pruning and quantization to operate 
efficiently on a limited energy budget.

• Task Encoder: It transforms the current input 
stream to a semantic task encoding and deter-
mines the user context or the activity label.

• Memory Buffer: This stores some light memory 
of the past instances of the tasks so as to con-
tinuously keep learning and avoid catastrophic 
forgetting.

Process Pipeline: Execution Flow
Before being sent to the target, every incoming signal 
is preprocessed and sent to a representation of latent. 
A task encoder finds out in what context it is taking 
place (user/activity/time), it queries the memory 
buffer what are the most relevant parameters. 
Depending on the battery state, the energy controller 

Fig. 1: NeuroMile Edge AI Architecture: Energy-Aware 
Task-Adaptive Inference Pipeline
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adapts the inference pipeline- such as to choose a 
shallow subnetwork. This modular behavior is also 
updated every now and then through meta-learning 
updates based on the stored feedback signals.

Architectural Layer Specification
Table 2. Functional overview of NeuroMile components

Layer Description

Sensor Interface Collects raw signals from edge 
sensors (e.g., IMUs, micro-
phones)

Encoder Layer Compresses high-dimensional 
data into latent embeddings

Task Context Layer Performs clustering or embed-
ding search to identify current 
task

Adaptive Inference Modular CNN or Transformer 
block configured dynamically

Controller Unit Monitors power metrics and se-
lect optimal execution depth

Memory Replay Buffer Stores representative samples 
and their loss gradients for re-
play updates

The role each layer plays towards system real-time 
and adaptability is explained in Table 2. As an example, 
the Adaptive Inference layer allows skipping some of 
the layers under low battery conditions, consuming 
less energy but with relatively small accuracy cost.

Energy vs. Accuracy Trade-Off Analysis
Energy efficiency is not the choice of design in one 
of these resource-limited edge environments, it is a 
deployment requirement. Controlled experiments  

were also performed in order to empirically 
demonstrate the energy-average optimization 
capabilities of the proposed NeuroMile architecture 
by demonstrating the trade-off between accuracy of 
inference and power use. The above experiments were 
carried out on the commonly deployed edge AI devices 
including the NVIDIA Jetson Nano and Raspberry Pi 4, 
which simulates real-world deployments using battery-
powered operation and a representative workload on 
multi-modal edge dataset models.

Experimental Configurations
The comparative analysis was comprised of the below 
four configurations representing each of the unique 
paradigms of developing edge AI models:

1. The Full-Precision Baseline Model was first used in.
A classic deep convolution network was trained in 
and implemented in 32-bit floating-point precision. 
Although this model is the most accurate in classifying 
data (89.6%), it does it at considerably high-power draw 
(2.8W). This structure demonstrates the maximum of 
predictive performance possible, and it is not used to 
maintain the edge deployment over extended periods 
because of energy requirements.

2. Depth-Reduced Inference Model
Pruned by removing convolutional and dense layers 
of a baseline model to have a smaller model. The 
tradeoffs of this model focus on decreased inference 
latency and reduced compute, and that comes at a 
moderate (86.2%) loss of accuracy, with a mean power 
of 1.9W. Although more viable to embedded systems, 
the performance loss would not be permissible in other 
high-stake systems, like autonomous ones or medical 
diagnostics.

3. Quantized Inference Model ( INT 8 )
Using post-training quantization this model can shift to 
8-bit integer arithmetic and provide energy efficiency 
as low as 1.5W due to reduced computational load. 
Nevertheless, it can also suffer a loss in accuracy 
(85.7%) and create possible errors because of a 
decreased numerical quality, thus, it is not optimal to 
operate on data with finer details.

4. Proposed NeuroMile Adaptive Inference
NeuroMile adapts its computation graph in real-time 
according to battery charge, workload and user situation, 
using depth scaling, task-adaptive parameter switching, 
and quantization-aware training. Such architecture 

Fig. 2. Flowchart of the decision-making pipeline
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realizes 88.9 percent accuracy using just 1.1W energy 
consumption, or a 60 percent decrease in energy use 
compared to the full model, and only a 0.7 percent 
accuracy decrease. It is this aspect that makes NeuroMile 
Pareto-optimal as a battery-sensitive use case like 
wearables, mobile health tracking or drone tracking.

Table 3: Accuracy and Power Consumption Comparison 
across Inference Configurations on Edge Devices.

Configuration
Accuracy  

(%)
Average 

Power (W)

Full-Precision Baseline 89.6 2.8

Depth-Reduced Inference 86.2 1.9

Quantized INT8 Model 85.7 1.5

NeuroMile (Proposed) 88.9 1.1

Fig. 3: Energy vs. Accuracy Trade-Off in  
Edge Inference Models

Table 4. Comparative performance of  
inference configurations

Configuration
Accuracy 

(%)

Power  
Consumption 

(W)

Full-Precision Baseline 89.6 2.8

Depth-Reduced Inference 86.2 1.9

Quantized INT8 Model 85.7 1.5

NeuroMile (Proposed) 88.9 1.1

The accuracy of the full precision baseline model 
was 89.6%, which is optimal because it determined the 
upper bound of performance. This, however, was at a 
cost of a very high energy consumption of 2.8W thus 
making it inapplicable in continuously utilizing the 
model on power-limited edge devices like wearable or 
mobile surveillance platforms.

The reduced and quantized INT8 models showed a 
significant power-saving advantage as they consumed 
1.9W and 1.5W, respectively, in depth. However, these 

arrangements experienced a significant decrease in 
morale (around 3-4 percent), which might interfere 
with the dependability in mission essential tasks like 
healthcare diagnostics, autonomous navigation or 
real-time threat detection, whose level of accuracy is 
unacceptable.

Conversely, the suggested NeuroMile framework 
indicated a strong trade-off yielding an accuracy of 
88.9%, almost equaling the high-precision reference 
model, and decreasing energy down to just 1.1W. This 
is a 60.7 percent decrease in power consumption, 
which was made possible without significant loss 
in prediction. Such a tradeoff renders NeuroMile 
especially affectable to energy-sensitive and high-
stakes inference.

These three central innovations belong to the 
main design and are behind this optimal energy-
performance synergy:

• Dynamic network depth modulation that 
would alter the calculating complexity of the 
model according to battery state in real-time;

• Task-adaptive parameter retrieval which is 
made possible with a small size in-memory 
task-context and lightweight meta-learning 
controller to achieve quick and efficient per-
sonalization;

• Amount of bits (in case of lots of data and few 
bits) training that includes graceful degrada-
tion control mechanisms, providing model sta-
bility even with constraints of precision.

A combination of these architectural improvements 
highlights the feasibility of NeuroMile in practical 
applications to the edge, especially those that span 
across remote patient monitoring, unmanned air 
surveillance, and industrial IoT, where the reliability of 
the decisions and high levels of energy independence 
are of utmost significance.

mAthemAtIcAl model And AlgorIthm 
desIgn
The NeuroMile architecture is based on the concept 
of gradient-based meta-learning, whereupon the 
model is educated to speedily adapt to new activities 
with minimal training examples and to continue to 
exhibit energy-efficient conduct at the periphery. 
This part makes the mathematical model formal and 
offers the learning algorithm to fit continuous edge  
inference.
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Meta-Learning Objective
The model parameter vector, and denote by 𝒯 i a task
that has been sampled according to the distribution 𝒯 (
𝒯 ). The main goal of meta-learning within NeuroMile is
to train an initialization of the model parameter θ that 
would enable it to adopt a new task quickly on few 
data with minimal computation requirements. This 
is especially vital in the case of edge deployments, 
where energy and latency are quite limited.

NeuroMile meta-update rule is the extension 
of classical Model-Agnostic Meta-Learning (MAML) 
problem and can be expressed as:

  (1)

Where:
• The task-specific loss of 𝒯 i is 𝓛ₜᵢ(·)
• α is the inner-loop learning rate of local task 

adaptation,
• β is the meta ( outer-loop ) learning rate that 

used to updated the shared initialization θ,
• The parameterized expression, the value  

θ - α∇𝓛ₜᵢ(θ) works in context to representing an 
adapted model parameters set following only 
one gradient step on task 𝒯ᵢ.

NeuroMile also optimizes this formulation with 
lightweight and task-specific adaptation mechanism 
and energy-aware constraints, so that meta-updates 
are crossing computationally at the duration of edge AI 
applications. The proposed modified first-order meta-
learning pipeline creates the balance between rapid 
adaptation, model generalizability, and minimized 
power consumption that allows conducting continuous 
personalization in the heterogeneous IoT surroundings.

Energy-Aware Adaptation Strategy
To facilitate the use of meta-learning to edge 
conditions where energy efficiency is restricted, 
NeuroMile proposes an energy-adaptive meta-update 
which adjusts the meta-update step size to the latest 
signal or measurement of battery level (or available 
energy) referred to as E(t), where t represents the 
current time or step.

The modified meta-update rule is the following:

 “θ←θ-β⋅γ(E(t))⋅∇θ∑TiLTi(θ-α∇θLTi(θ))” (2)

Where:
• γ(E(t))∈(0,1] is an energy awareness damping 

factor that scale the level of an update adap-
tively,

• γ(E(t)) is inversely proportional to energy 
deficit (e.g. when battery is low, updates are 
quietened),

• The rest of the symbols obey the same nota-
tion as laid down in Section 4.1.

This formulation ensures adaptive training 
behavior in accordance with system energy constraints. 
During periods of low power availability, the outer-
loop update is conservatively scaled down, reducing 
processor load and thermal output. Conversely, under 
high energy availability, full-gradient updates are 
permitted—enabling faster convergence and deeper 
adaptation.

By embedding energy-awareness into the meta-
learning loop, NeuroMile maintains performance 
without compromising device longevity, making it 
highly suitable for battery-sensitive applications such 
as wearable health monitors, autonomous edge robots, 
and IoT sensor platforms.

Algorithm 1: Energy-Aware Meta-Learn-
ing in NeuroMile
The NeuroMile meta-learning loop can be outlined in 
the following way. It displays a trade-off between task 
adaptation and energy constrained optimization as 
well as responsive to new information.

Algorithm 1: Energy-Aware Meta-Learning Loop  
in NeuroMile

1. Input: 
	 Learning	rates	α,β
	 energy	threshold	Emin	,
	 task	buffer	B
2. Initialize: 
	 Shared	model	parameters	θ
3. For each meta-iteration do 
	 3.1	Sample	batch	of	tasks	T1,…,Tn∼B	
 3.2 For each task Ti : 
	 	 	 a.	Clone	parameters	θ′∼θ		 
   b. Compute inner update: 
	 	 	 	 	 θi′∼θ−α∼θLTi(θ)	 	 	 	 
   c.  Evaluate loss on updated parameters  : 

LTi(θi′)	
 3.3 Compute total meta-gradient: 
	 3.4		If	current	battery	level	E(t)>Emin	: 

Update meta-parameters with energy 
scaling:

4. Return:	Optimized	model	parameters	θ
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Computational Efficiency
NeuroMile in contrast to the standard MAML, where 
multi-layer optimization requires high computation 
in the form of second-order gradients, instead 
NeuroMile is based on first-order approximations and 
checkpointing optimization to minimize the memory 
footprint, compatible with low-energy edge devices, 
such as Jetson nano and Raspberry PI 4. Moreover, 
graceful degradation on low-resource is dynamically 
achieved in early stopping during meta-updates on the 
basis of energy decay rate.

ImPlementAtIon And dAtAset
In order to test the feasibility, flexibility, and energy 
consumption of the proposed NeuroMile framework, a 
wide set of experiments were performed in the set of 
real-life edge computing environments. In this chapter, 
the description of implementation tools, hardware, 
and data can be found to evaluate the generalizability 
and performance of the model in various tasks and 
modalities.

Development Tools and Software Stack
It was written with Python 3.11 and the high level 
PyTorch Lightning framework, allowing a modular 
training loop and minimizing boiler plate code. To 
monitor the experiments, visualize, and log Tensor 
Board was incorporated into the pipeline to track 
the loss convergence in real time, and the accuracy 
data and memory consumption. In order to facilitate 
deployment and testing under resource-constrained 
edge settings, ONNX model export and TensorRT 
optimization has also been included on certain 
experiment, particularly those which are designed to 
run on latency-oriented platforms.

Hardware Platforms
To simulate the deployment conditions that are 
representative of a real-world edge AI application, 
the suggested NeuroMile framework was tested and 
deployed on two of the most popular platforms of edge 
computing: the Raspberry Pi 4 Model B and the NVIDIA 
Jetson Nano. The reason these platforms were chosen 
is because of their huge popularity in low-power, real-
time AI applications including wearables, surveillance 
drones as well as IoT gateways.

The Raspberry Pi 4 Model B was used as the 
main testing platform: it is a small computer with 
a quad-core ARM Cortex-A72 processor and 4 GB 
RAM. The same platform was selected as the base to 

evaluate the possibility of using lightweight inference 
models. It had a CPU-only setup and limited thermal 
envelope, which meant it was an excellent choice of 
benchmarking latency and performance under severe 
resource limitations.

In complementary fashion, the NVIDIA Jetson 
Nano, which is also equipped with 4 GB RAM was used 
to test the energy-aware blocks of the NeuroMile 
architecture. Adiable using a 128-core Maxwell GPU, 
CUDA-accelerated support, and Jetson Nano allowed 
us to test the real-time parallel processing, encoding 
latency of tasks, and routines of continual learning 
that can be optimized by the GPU. It also supported 
TensorRT model optimizations, improvement in the 
speed of inference accuracy and power efficiency.

Energy input into both devices was reliable during 
testing because they worked on USB-C regulated 
power supply at 5V/3A. A high precision inline USB 
multimeter gathering real-time power usage data 
was used to measure dynamic power usage profiles 
through model configuration. These metrics gave an 
idea of the trade-offs between the computation and 
the energy efficiency that is vital in certifying the 
applicability of the NeuroMile adaptive energy control 
module in realistic edge environments.

Dataset Description
In an effort to assess the plasticity, scalability and 
cross-modal performance of the proposed NeuroMile 
framework in a stringent manner, three publicly 
accessible and domain-diverse datasets were used. 
All three sets of data belong to distinct modalities so 
that each of them (sensor, audio and image) confirms 
the effectiveness of the model with respect to various 
heterogeneous edge computing tasks.

PAMAP2 Human Activity Recognition
The PAMAP2 database acts as a benchmark of time 
series based human activity recognition (HAR) 
with wearable free sensors. It is a collection of tri-
axial accelerometers, gyroscope and temperature 
measurements of various positions on the body, 
sampled at a frequency of 100 Hz over 18 prescribed 
daily activities (e.g., walking, sitting, ironing). In 
the case of NeuroMile, this data enables the ongoing 
informing case in which the model will in the future 
be made aware of new users or activity patterns. It 
can be especially applied to examine personalization 
features in terms of health monitoring and physical 
rehabilitation.
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Edge Speech Commands Dataset – Audio 
Keyword Spotting
The Edge Speech Commands data is intended to be 
used in real-time and with low latency, as part of the 
keyword spotting in limited resources setting. It has 
sounds of 35 predetermined commands pronounced 
by different people in different acoustic conditions. 
The task of NeuroMile can only occur with the reduced 
command set (e.g., yes, no, stop, go), such as the 
usage of voices in smart home automation. This data 
set evaluates the real time inference and speaker 
specific adaptation of the framework, which is critical 
in privacy preserving edge deployments.

CIFAR-100 – Few-Shot Image Classification
CIFAR-100 dataset, 60, 000 32 32 colour pictures 
divided into 100 fine-grained groups (600 pictures 
per classification). It has been predominantly used 
in benchmarking the image classification problem, 
in low-data settings. This paper embraces the few-
shot learning setup where it is observed that the 
efficiency of the meta-learning, as well as task-to-task 
generalization, of NeuroMile is observed to be good 
in the vision-related tasks. This dataset evaluates 
model trained with low resources critical to deploy as 
a resource-limited task, which is highly demanded in 
robots and autonomous surveillance.

Data Preprocessing and Pipeline 
Overview

Fig. 4: Data preprocessing and pipeline overview 

Data preprocessing Necessary so the cross domain 
capability of the system is strong and the computational 
power is efficient, NeuroMile has a data preprocess on 
an individual sensor input, i.e., audio, image and the 
overall structure is the same. The pipeline has three 
main phases that include input normalization, latent 
embedding and task encoding, and creation of task-
buffer to perform meta-learning.

Data Cleaning and Normalization
Preprocessing of each dataset is done to be modality 
specific, to have signal quality and to be comparable 
across tasks:

• Sensor Data (PAMAP2): A 4 th order Butter-
worth low pass filter is used to remove the high 
frequency noise. Finally, every sensor channel 
gets z-score normalized to have zero mean and 
unit variance, which will make it more stable 
during gradient-based training, making user- 
invariant feature learning possible.

• Audio Data (EdgeSpeech): The audio clips 
are down sampled down to 16 k frequency, 
trimmed to 1-second windows and turned into 
Mel-Frequency Cepstral Coefficients (MFCCs) 
with 13 coefficients per frame. This converts 
varying length raw signals to fixed dimensional 
spectral representations that are suitable to 
efficient embedding.

• Image Data (CIFAR-100): input images are 
rescaled to the height of 32, width of 32 pix-
els. Augmentations that will be used on the 
data include random horizontal flips, bright-
ness jitter, and random cropping that will en-
hance generalization and introduce variation 
with continually changing tasks.

Embedding and Task Encoding
Every preprocessed data lead to a concise latent 
representation by using a modality-specific encoder:

• A Low dimension 1D CNN on sensor data,
• Audio embedding an LSTM layer concatenated 

with 2-layer LSTM,
• And a visual data block that is shallow Res-

Net-like.

At the same time a task context identifier is 
assigned to every sample which refers to a unique 
learning context e.g. a user ID, activity segment, or 
speaker profile. This label is applicable in the process 
of picking tasks and meta-updates, which will be 
personalized and continuously adjusted.

Task Buffer Creation and Meta-Batching
Those encoded examples, along with their task labels, 
are feed into a task-context-sensitive episodic memory 
buffer. This buffer has an advantage of supporting:

• Meta-batching online in which the mini-batches 
are dynamically constructed, consisting of a 
heterogeneous set of tasks over time,

• Selective replay, which facilitates lifelong 
learning without catastrophic forgetting
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• And energy-sensitive scheduling, which will 
provide low overhead access to the contextully 
meaningful past samples.

Table 5 indicates the preprocessing methods 
and embedding models to be used on each of the 
input modalities. Such decisions allow replicating 
representation learning across diverse data sources 
and little consumption of resources at the edges.

sImulAtIon FrAmeWork And dePloyment 
bluePrInt
Simulation Objective
The simulation part of NeuroMile framework aims 
to reflect its real-time decision-making behaviour 
under dynamic energy complexity within MATLAB/
Simulink framework. The main task is to confirm 
the responsiveness of the adaptive inference engine 
to changing levels of energy and to simulate depth 
switching of the model delicately based on the 
example of the model, and to track the accuracy in 
the output and power consumption at various working 
mode levels.

The simulation, as opposed to the static software 
evaluation, adds a hardware-representative control-
level abstraction, which is easy to integrate with the 
edge platforms, such as wearable and smart IoT nodes. 
The simulation therefore fills the gap between the 
conceptual design and the realistic implementation, 
and can be used to reproduce and make case-
controlled benchmarks of the NeuroMile architecture 
in energy sensitive scenarios.

Simulation Architecture
High-Level System Overview
The following figure 5 shows the conceptual 
architecture of NeuroMile adaptive inference system. 
The processing pipeline starts with a Sensor Emulator 

that produces some sort of synthetic input signal which 
is then treated as different sensor modalities e.g. 
accelerometer or audio data. These are whitened by a 
lightweight Task Encoder, which projects raw input to 
latent features in preparation of downstream decision 
making. The encoded data are processed through an 
Adaptive Inference Engine which adapts its level of 
computations to the constraints of real-time energy 
which is then monitored by the Energy Controller. The 
ultimate inference result can be measured with Scope 
unit providing an opportunity to conduct performance 
monitoring and measurement in real-time. It is a very 
abstract model of the system that encompasses both 
data and control flow of the system, filling the gap 
between algorithm design and implementation of the 
subset of embedded systems.

Simulink Implementation of Battery-Based 
Switching
This figure 6 shows the elaborated Simulink of the 
NeuroMile. It has a cascaded switching architecture in 
its attempt to mimic battery-aware depth switching. 
The Battery Level block has a ramp signal imitating 
a decrease of energy form 100% to 10%  during the 
simulation. There are three computational blocks 
in Adaptive Inference Engine as Cube (x3) element, 
Square (x2) element and Linear (x) element 
representing neural inference capabilities of various 
depths. Dynamically routing the cascade input signals 
to the correct depth path is determined by the use 
of cascade Switch blocks based on battery thresholds 
(≥0.75, 0.4–0.75, and <0.4). The final output is 
observed with a Scope block where transition of the 
waveforms and integrity of the mode switching can 
be studied.

Table 5: Modality-Specific Preprocessing Techniques

Modality Dataset
Preprocessing 

Steps
Embed-

ding Model

Sensor PAMAP2 Low-pass 
filtering, z-score 
normalization

1D CNN

Audio EdgeSpeech Trimming, MFCC 
extraction

2-layer 
LSTM

Image CIFAR-100 Resizing, random 
cropping, 
horizontal flip

Shallow 
ResNet

Fig. 5: High-Level Block Diagram of NeuroMile  
Inference Framework
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MATLAB/Simulink Environment
MATLAB R2023a was used with Simulink in developing 
the simulation environment. It uses the model based 
designs to simulate real time system dynamics and 
energy conscious behaviour. Very widely used Simulink 
blocks are:

• Signal Generator / Sine Wave: It creates artifi-
cial sensor data (i.e. sinusoidal signal).

• Ramp Block: The model is used to simulate de-
cay of battery energy at linear rate between 
1.0 and 0.1.

• Gain and Product Blocks: They are used in 
simulating linear, square and cubic transfor-
mations of the inference engine.

• Switch Blocks: a decision logic is applied to 
immediate battery levels.

• To Workscope and Scope: View and record sim-
ulation results in order to analyze them.

The model was set up as a variable-step (ode45) 
simulation with a fine grained maximum step size (= 
0.01 s) value to provide high resolution transition of 
waveforms. The simulation time established was 50 
seconds to enable the draining of the battery level of 
100 percent to 10 percent.

Key Simulation Components
The simulation uses a variety of custom elements 
that are relied upon to the hardware-independent 
behavioral model of NeuroMile:

• Energy-Level Signal Generator: It produces a 
time by means of Energy-Level Signal Genera-
tor that takes a Ramp block gradually, deplet-
ing a battery.

• Task Encoder: It performs a Gain transforma-
tion on the inputs and this represents embed-
ded feature extraction.

• Inference blocks:
 � Cube Block (x3): Presents complete-depth 

inference that is employed to the high-en-
ergy states.

 � Square Block (x2): It represents medi-
um-sum inference that finds equivalence 
in the balance between accuracy and 
power.

 � Linear Block (x): This is low energy infer-
ence applied at high stakes of energy lev-
els.

• Switch A and B: Applies or provides two tier 
conditional logic:
 � Switch A will either choose Cube or Square 

block depending on the threshold of 0.75.
 � Switch B selects between Switch A output 

and Linear Block, depending upon the 0.4 
threshold.

• Scope/Display: Displays the real time produc-
tion and checks adaptive behavior and wave-
forms.

Fig. 6: Simulink-Based Architecture of Battery-Driven Multi-Level Adaptive Inference System
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Simulation Results
The system has been simulated at 1000 time steps 
(50 seconds) whereby the battery level was reduced 
to 0.1. The findings confirm the targeted response of 
dynamic depth switch according to the restriction of 
energy.

Annotated Simulated Scope Output

Fig. 7: Simulated Scope Output with Transition Markers

This figure 7 shows the simulated result of the 
NeuroMile system showing adaptive switching with 
battery constraint. The waveform changes in three 
modes of computation according to the availability of 
energy. First, in the case of the already low battery 
and voltage above 0.75, the Cube Block is in use, and 
steep high-amplitude spikes are generated. Around 
13.89 seconds, the battery starts closing in on 0.1 
by dipping below 0.75, thus allowing the transfer of 
control to the Square Block, which produces nonlinear 
outputs that are, however, smoother. Lastly, at 
approximately 33.33 seconds, the battery voltage goes 
down below 0.4, and the Linear Block becomes active, 
and generates a sine wave of a constant baseline. 
These jumps are executed with dashed lines clearly 
demonstrating that adaptive control logic operates 
properly in terms of functionality.

Actual Simulink Display Output
This picture presented in Figure 8 is in picture form 
of the actual waveform that is read on Simulink Scope 
block when the simulation is run. It ascertains the 
dynamic shift between the Cube, Square, and Linear 
inference paths as the battery levels reduce. The figure 
of the waveform reveals definite areas of height and 
convexity regarding the corresponding computational 
blocks. The high-depth cube inference is through the 
use of the early-stage waveform where the high spikes 
are being represented. It is followed by a medium-
range block with steadiness in the amplitude which is 
the square inference. In the last trace, we can see that 

the sinusoidal signal is clean indicating the transition 
of the system to low-power linear inference mode. 
The result of such live simulation is the verification 
of the logic design as well as its executable behaviour 
under real-world constraints.

exPerImentAl results And AnAlysIs
In order to critically evaluate the work of NeuroMile, 
a venture of comparative experiments was run upon 
the PAMAP2 dataset that is regarded as a benchmark 
in activity recognition because of its unparalleled 
user diversity and temporal dynamics. Our model was 
contrasted to two good baselines, namely Federated 
Averaging (FedAvg) and Model-Agnostic Meta-Learning 
(MAML). The benchmarking takes into consideration 
three parameters of importance in terms of 
deployment of edge AI: accuracy in classification, 
energy consumption, and adaptation latency.

Performance Metrics

Fig. 9: Comparative Performance Analysis of FedAvg, 
MAML, and NeuroMile

Fig. 8: Simulink Display Output Capturing Real-Time 
Adaptive Inference
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The NeuroMile contrasted with the two most 
popular meta-learning approaches FedAvg and MAML on 
the PAMAP2 dataset is shown in Table 6. The evaluation 
criteria will encompass: classification accuracy, the 
use of energy (in mWh), time of adaption (in seconds) 
and the overhead of the computation.

Compared to baseline models, the NeuroMile 
performs best because it provides the most 
accurate results (88.9%), the least number of energy 
consumption (190 mWh), and the shortest time of 
adaptation (7.8 s). NeuroMile has little computational 
overhead, owed to lightweight task adaptation 
mechanism and energy-aware notion of an inference 
path. Conversely, FedAvg requires excessive energy 
consumption and computational expense because of 
pertinent ample-model update, whereas MAML is more 
computationally miserly than FedAvg yet presents a 
moderate computational cost. These findings put 
NeuroMile in the Pareto-optimal perspective of real-
time, resource-limited edge deployments.

Accuracy vs. Energy Trade-Off

Fig. 10. Accuracy vs. Energy Trade-Off 

In figure 10, this chart illustrates the trade-off in terms 
of accuracy in classification over energy consumption. 
NeuroMile is the best point at the Pareto front- it has 
almost the highest accuracy and the lowest energy 
consumption. On the contrary, FedAvg uses 63% more 
energy to deliver a low accuracy which represents 
inefficient resource utilization regarding edge 
deployments. This emphasizes the major strength 
of the NeuroMile such as energy-aware adaptation 
with dynamic depth scaling and quantization-aware 
learning.

Adaptation Dynamics

Fig. 11. Adaptation Curve Over Time

The line plot in figure 11 captures the model accuracy 
in respect to the number of adaptation iterations. 
FedAvg has slower convergence and tends to plateau 
at an early stage whereas MAML on the other hand has 
a faster adaptation but still experiences fluctuations 
because of the fixed update mechanism. NeuroMile, 
context-sensitive parameter retrieval, and task-buffer 
replay, possesses consistent and fast convergence 
characteristics, with an accuracy of 85per cent in 

Table 6. Performance comparison on the PAMAP2 dataset

Model Accuracy (%) Energy (mWh) Adaptation Time (s) Computational Overhead

FedAvg 84.2 310 18.1 High

MAML 86.5 275 10.3 Moderate

NeuroMile (Proposed) 88.9 190 7.8 Low

Table 7: Hardware Mapping Metrics for Energy-Aware Inference Paths

Inference Path Logic Depth Gate Count LUT Usage Area (mm²) Latency (ns)

Linear (x) 1 200 120 0.015 8.1

Square (x²) 2 350 240 0.023 9.4

Cube (x³) 3 520 370 0.036 11.8
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5 seconds and ~ 89per cent at 8 seconds accuracy 
typically. Such time sensitivity is important to mission-
critical edge applications: fall detection or voice-
activated security.

Table 7 is summarized as the amount of resource 
utilization and timing experiences at the hardware 
level of the three adaptive inference modules, i.e., 
Linear, Square, and Cube modules employed in the 
NeuroMile application. The description language 
designed to program the logic blocks was behavioral 
Verilog, a synthesis tool was Vivado Design Suite, 
and it was programmed to a Xilinx Artix-7 FPGA. The 
Linear block which stands for shallow inference has 
the minimal area and latency thus it should be used in 
battery-limited execution. The Square block presents 
a balance between resource occupancy and inference 
ability and the Cube block is more cost expensive 
(gate count, area, and delay) and applicable only 
when there is a high energy availability.

The comparison of gates and LUT, silicon area and 
inference time is given in Figure 12 and compared 
over the three inference paths. The computational 

depth deepens with an increment on the gate count of 
200 (Linear), 520 (Cube). The LUT heavy usage is also 
similar, considering Cube block uses more than 3 times 
the amount of LUTs as Linear does. On area metrics, 
based on RTL synthesis, Cube block occupies 0.036 mm 
2 to Linear 0.015 mm 2. The measurements of latency 
also correspond to the complexity of the functions 
with the Cube block being the most complex one 
(~11.8 ns) since it involves a multi-stage computation 
whereas the Linear path is finished in ~8.1 ns. These 
findings confirm the design objective of adaptive 
switching in NeuroMile, that is, to select computation 
paths dynamically, depending upon available energy.

ASIC Implementation Feasibility
To test the suitability of implementing the NeuroMile 
configuration in ASIC based platforms, the three 
inference modules where then mapped onto standard 
cell libraries at a 65nm CMOS process node. According 
to synthesis scaling estimates, the Linear block 
consumes ~0.035 mm 2, the Square block ~0.055 mm 2 
and the Cube block ~0.08 mm 2 without the overhead 

Fig. 12: Hardware Metrics Comparison Across Adaptive Inference Paths
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of memory and analog peripherals. This kind of scaling 
translates to power with the Cube path consuming 
about 2.5 to 1 dynamic power relative to Linear block 
under full switching conditions.

The latency estimations will grow proportionally 
with the logic depth too: the Cube block is expected 
to have ~1.5x the critical path delay of the Square 
block, and almost 2x the critical path delay of the 
Linear block. Nevertheless, the fact that it can be 
highly selectively engaged in high-energy phases is 
reason to include the Cube block where high-accuracy 
requirements are needed.

These results validate that the modular inference 
engine of NeuroMile is very efficient to be synthesized 
to ASIC low-power applications. Control logic to 
switch inference paths is simple combinational logic 
multiplexers and comparators so it is insignificant on 
an area and power overhead. In general, the NeuroMile 
framework is quite prone to integrating itself into 
wearable neural coprocessors, edge-AI SoCs, and other 
real-time embedded AI products that will benefit the 
utmost energy-consciousness.

dIscussIon
The suggested NeuroMile framework exhibits a 
number of significant advantages that make it a 
promising system to be applied to the edge-based 
continual learning situations in the resource-limited 
settings. Among its main benefits, it can be noted 
that it enables real-time adaptation locally at edge 
devices but does not need retraining of models on 
the server or sending data to the cloud. This allows 
fast and individual personalization between all users 
and devices and drastically improves low-latency 
and exclusion of third-party connectivity. As an extra 
feature, the mechanism of the energy-aware control 
has been included, so the model is very good to be 
implemented in the battery-operated Internet of 
Things (IoT) systems, like wearable health monitors 
or autonomous robotics. The possibilities provided 
by the architecture in the context-aware encoding of 
tasks also enhance the quality and suitability of the 
predictions that would otherwise be inaccurate and 
inapplicable, particularly in situations with non-static 
user behavior or device conditions heterogeneity.

In spite of its advantages, there are limitations 
of NeuroMile. The existing system can face system 
performance bottlenecks in case of fast task switches 
and as a result, in a multitasking situation, more 
latency may be experienced. In addition to episodic 

memory buffers and context encoders, there also are 
memory overheads due to use of such components, 
which could be a limitation of ultra-low-power or 
other memory-constrained devices.

Ethically and in terms of deployment, NeuroMile 
provides increased privacy by removing the requirement 
of all adaptation and learning to occur in the cloud; 
this means that sensitive user-related information 
cannot be transmitted or stored in the cloud servers. 
Nonetheless, this local training model also requires 
incorporation of strong security measures that protects 
downstream against adversarial update or model 
poisoning attacks particularly open or decentralized 
settings. The future research should investigate hybrid 
secure federated learning extensions or use some 
differential privacy techniques to make the system 
more resilient and trustworthy in practice.

Innovations and Emerging Challenges
With edge computing systems requiring more and more 
real-time adaptability as well as energy efficiency, a 
set of progressive innovations is brought to the table by 
NeuroMile that stretches the limit of what can be done 
on a limited hardware design. The model is specially 
adapted to edge intelligence and entails dynamic self-
adjustment without retraining on the central servers.

Key Innovations
• Adaptive Depth Switching: NeuroMile has a 

runtime depth controller with the capability 
to switch the active layers of the inference 
progressively depending on the system level 
measures (Battery status, intensity of work-
load, etc). This mechanism guarantees the 
best trade-off between accuracy of inference 
and energy consumption and, thus, it is an 
ideal fit in time-varying edge problem like mo-
bile health or robotic control.

• Task-Context Encoding: Instead of stateless 
embedding or retraining on the server as 
other meta-learning frameworks, NeuroMile 
uses an encoder to learn the semantics of a 
task on-device, yet the size of the encoder 
is small. This can make the system able to 
make personalized predictions under minimal 
latency and without the need of connectivity 
to increase robustness in intermittent/offline 
cases.

• Modular Inference Core: By embracing a new 
modular structure, there are ways to change 
computing paths between low- and high-preci-
sion effortlessly. It is this heterogeneity within 
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the architectural design that is particularly 
beneficial to energy constrained edge deploy-
ments, where logic can be turned on and off 
on demand to suit the current computational 
budget.

Emerging Challenges
Regardless of such valuable efforts, there are a 
number of issues that are critical towards the scalable 
and secure implementation of NeuroMile within a real-
world environment:

• Rapid Task Switching Overhead: Where tak-
ing quick actions between different contexts 
(switching between human tasks or different 
scenarios in the environment) is at play the 
ongoing current repeated learning processes 
can be rendered unstable or face the problem 
of catastrophic forgetting. This can be miti-
gated by more development of hybrid memory 
consolidation and meta-regularization.

• Local Learning Security: Model poisoning, ad-
versarial drift and stealth data injection are 
recent attacks that can be enabled by on-de-
vice learning. Reflectively, we still do not 
have reliable protection against these attacks 
on edge systems without amplifying computa-
tional overheads due to the absence of cen-
tralised monitoring in these systems.

• Scalability Hardware Limitations: The current 
scalability limitations as evidenced in deploy-
ment of NeuroMile and subsequent simula-
tion of the FPGAs shows following of proof-
of-concept energy savings. But when applied 
to ASICs, neuromorphic chips, or RISC-V-based 
platforms, this will require redeveloping hard-
ware-aware compilation, cross-layer co-de-
sign, and retraining with quantization.

Figure 13 shows a radar chart of the effect of 
the three major innovations introduced by NeuroMile 
namely: adaptive depth switching; task-context 
encoding and modular inference core on four 
orthogonal dimensions which include adaptability, 
energy efficiency, latency and personalization. The 
chart notes how subsystems play individual roles 
in the fine-tuning of real-time, energy friendly, and 
user-tailored inference mediated at the edge of the 
network.

conclusIon And Future Work
The paper has proposed NeuroMile, an adaptive and 
innovative edge AI framework that is capable of 
striking the hold between personalization, accuracy 
of inferences, and energy consumption. Neaded as 
a resource-efficient application in the edge setting, 
the NeuroMile takes advantage of the ongoing meta-
learning concepts and the energy-sensitive controller 
through which inference applications are powered 
by context and are low-power intensive. Its dynamic 
configuration dynamically changes the computational 
depth and parameters depending on real-time 
battery levels and complexity of tasks permitting 
the framework to surpass the traditional methods in 
flexibility and power costs. Evaluation on a variety of 
datasets and hardware formats showed that NeuroMile 
has a similar or better accuracy using as much as 60 
percent less power, proving the feasibility of applying 
NeuroMile to develop wearable, health monitoring 
systems, and standalone self-sufficient edge devices.

Future Work 
The future work will concentrate in three main 
directions as follows:

1. Integration of Quantization-Aware Training: Model 
compression with improved support of quantized 
operations during training in order to continue reducing 
the latency and energy cost of inference without 
compromising the prediction quality.

2. Field Evaluation (real-time deployments): Test the 
effectiveness of the system by varying the scenarios 
in the real world especially in the areas of healthcare, 
smart home, and drone surveillance to support systems 
robustness with certainty with the different environments.

3. Federated Continual Learning Variants: There is a 
trend to explore (how) federated learning paradigms 
and continual learning can be used to jointly perform 
collaborative, privacy-saving update on pairs of edge Fig. 13:  Radar chart
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nodes and how to keep a task specific and communication 
costs low simultaneously.

Such extensions are meant to enhance the 
scalability, security/practicality of the NeuroMile to be 
able to be used in larger scale in the next generation 
edge intelligence systems.
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