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ABSTRACT 

As of 2012, limits on the size of data sets that are 

feasible to process in a reasonable amount of time were 

on the order of exabytes of data.business 

informatics. The world's technological per-capita 

capacity to store information has roughly doubled every 

40 months since the 1980s,  as of 2012, every day 

2.5 quintillion (2.5×1018) bytes of data were created and 

it is required to analyze a vast amount of data. A number 

of companies have developed sophisticated  

monitoring tools for data analysis. For specialized APIs, 

can monitor single invocations. To maximize the benefit 

of data monitoring, the data has to be stored for an 

extended period of time for ulterior analysis. This new 

wave of big data analytics imposes new challenges 

especially for the application performance monitoring 

systems. The monitoring data has to be stored in a 

system that can sustain the high data rates and at the 

same time enable an up-to-date view of the underlying 

infrastructure. With the advent of modern key-value 

stores, a variety of data storage systems have emerged 

that are built with a focus on scalability and high data 

rates as predominant in this monitoring use case. In this 

work, we present our experience and a comprehensive 

performance evaluation of six modern (open-source) data 

stores in the context of application performance 

monitoring.  

We evaluated these systems with data and workloads that 

can be found in application performance monitoring, as 

well as, on-line advertisement, power monitoring, and 

many other use cases. We present our insights not only 

as performance results but also as lessons learned and 

our experience relating to the setup and configuration 

complexity of these data stores in an industry setting.  

 

1. INTRODUCTION 

Enterprise systems today are very large and comprise 

complete data centers with thousands of servers. These 

systems are heterogeneous and have many 

interdependencies which make their administration a 

very complex task. To give administrators an on-line 

view of the system strength, monitoring frameworks 

have been developed. Common examples are Ganglia [4] 

and Nagios [5]. These are widely used in open-source 

projects and academia (e.g.Wikipedia). However, in 

industry settings, in presence of rigid response time and 

availability requirements, a more thorough view of the 

monitored system is needed. Application Performance 

Management (APM) tools, such as Dynatrace2, Quest 

PerformaSure3, AppDynamics4, and CA APM5 provide 

a more sophisticated view on the monitored system. 

These tools instrument the applications to retrieve 

information about the response times of specific services 

or combinations of services, as well as about failure 

rates, resource utilization, etc. Different monitoring 

targets such as the response time of a specific servlet or 

the CPU utilization of a host are usually referred to as 

metrics. In modern enterprise systems it is common to 

have thousands of different metrics that are reported 

from a single host machine. In order to allow for detailed 

on-line as well as off-line analysis of this data, it is 

persisted at a centralized store. 

http://en.wikipedia.org/wiki/Exabytes
http://en.wikipedia.org/wiki/Business_informatics
http://en.wikipedia.org/wiki/Business_informatics
http://en.wikipedia.org/wiki/Quintillion
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1.1 INTRODUCTION TO BIG DATA 

In the starting, the data was in the form of files and soon 

emerged as database. But as the Tedd Codd’s stone tablet 

inscribed in 1970 and began to gain commercial attention 

in 1980, the need for Big Data arise. The phrase Big Data 

refers to huge, frequently increasing and often formless 

datasets from varied sources, stored in remote server 

farms, and mined for significance. Many internet-based 

companies hold petabytes of data, Yahoo alone has over 

25 petabytes [1].  In 2009, more than one petabyte (1015 

bytes) of personal location-based data was generated 

across the globe [2]. In 2010, every continent on the 

planet produced in excess of 50 petabytes of data. 

By some accounts, 90% of the recorded data in the world 

today has been created in the last two years - and the rate 

is accelerating. Big data is not only huge, but also 

diverse. Big data sources include environmental sensor 

networks, traffic monitoring systems, mobile phones, 

satellite imagery, video surveillance, posts to social 

media sites, and transaction records of online purchases, 

electronic health records, and satellite imagery, just to 

list a few important ones.  If your organization is just like 

others, you are capturing and sharing more data from 

more sources than ever before. As a result, you are facing 

the challenge of managing high volume and high-

velocity data streams quickly and analytically. Big Data 

is all about finding a needle of value in a deposit of 

unstructured information. Companies are now investing 

in solutions that infer consumer behavior, detect fraud, 

and even predict the future!  

McKinsey released a report in May 2011 stating that 

leading companies are using big data analytics to gain 

competitive advantage. They predict a 60% margin 

increase for retail companies who are able to harvest the 

power of big data. To support these new analytics, IT 

strategies are mushrooming; the newest techniques 

include brute force assaults on massive information 

sources, and filtering data through specialized parallel 

processing and indexing mechanisms. The results are 

correlated across time and meaning, and often merged 

with traditional corporate data sources. New data 

discovery techniques include spectacular visualization 

tools and interactive semantic query experiences. 

Knowledge workers and data scientists sift through 

filtered data asking one unrelated explorative question 

after another. As these supporting technologies emerge 

from graduate research programs into the world of 

corporate IT, IT strategists, planners, and architects need 

to both understand them and ensure that they are 
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enterprise grade. Planning a Big Data architecture is not 

about understanding just what is different. It’s also about 

how to integrate what’s new to what you already have – 

from database-and-BI infrastructure to IT tools, and end 

user applications. Oracle’s own product announcements 

in hardware, software, and new partnerships have been 

designed to change the economics around Big Data 

investments and the accessibility of solutions. The real 

industry challenge is not to think of Big Data as a 

specialized science project, but rather integrate it into 

mainstream IT.  

1.2 APPLICATION PERFORMANCE 

MANAGEMENT 

 Application performance management refers to the 

monitoring and managing of enterprise software systems. 

An example of an enterprise system is shown in Figure 

above.  

There are different ways to manage this kind of 

architecture. A common approach is the ARM standard 

[3]. In this approach every section has to implement the 

ARM API that is available for C and Java. Prominent 

ARM instrumented applications are the Apache HTTP 

server and IBM DB2. Although several common 

enterprise software systems are already ARM enabled it 

is often not feasible to implement the ARM API in 

existing systems. Another approach that is applicable for 

Java based systems is byte code instrumentation. This is 

enabled by the Java Virtual Machine Tool Interface that 

was specified in JSR-163 and introduced in J2SE 5.0. Its 

intention is to present an interface for profiling and 

debugging. Byte code instrumentation allows 

augmenting Java based software components with agents 

that have access to the state and the method invocations. 

The approach that is used in the CA APM products 

enables monitoring components, tracing transactions, and 

root cause analysis without changing the code base of the 

monitored system. The monitoring can be done on a very 

high level of detail. Current systems can generate 

millions of measurements per second where each data 

point may contain important information and therefore 

has to be stored safely. To fully understand the state of 

the monitored systems thousands of queries have to be 

processed on the measurements per second. Due to these 

enormous insert and query rates the underlying data store 

has to be highly scalable. To support the necessary insert 

rates current systems often store the measurement 

information in at least on disk and process them 

asynchronously and in batch. The introduction of an 

integrated data store would allow more sophisticated data 

analysis like trend analysis that current systems cannot 

offer. 

1.3 APPLICATION REPONSE 

MANAGEMENT 

ARM is an API jointly developed by an industry 

partnership that is used to monitor the availability and 

performance of applications. This monitoring is done 

from the perspective of the application itself, so it 

reflects those units of work that are important from the 

perspective of the business. The ARM standard is 

vendor-neutral and is targeted toward managing the 

performance of distributed applications. 
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2. LITERATURE REVIEW 

In literature [1], the key points of Big Data are 

mentioned. The Big Data definition and its 

characteristics (variety, volume, and velocity) are 

explained in the work. The Hadoop File System is also 

explained. Hadoop is a scalable fault-tolerant file 

distributed system for data storage and processing. Core 

Hadoop  is of two types: Hadoop File Distributed System 

(HFDS) and Map-Reduce: Fault Tolerant Distributed 

System. 

In work [2], the need of switching to Big Data has given. 

The data is huge not in terms of size but it also contains a 

number of other variations as velocity, variety, etc. 

It described [3], the various key data stores that we are 

requiring for the enterprise set up. The various workloads 

are also mentioned that we require for deducing the 

latency and throughput of the monitoring data. The APM 

tools are also mentioned here. 

In the research work [4][5], the monitoring frameworks 

have been defined. The design, structure and framework 

of the Ganglia monitoring system and Nagois monitoring 

system has been discussed. 

In [6][7][8], the benchmark key data stores are discussed. 

The key data stores are the database system with 

different properties and can be employed in enterprise 

system as per the industry requirements. 

In [9], the scalability features of the key data stores are 

discussed. The workloads are also mentioned with 

different specification (read, write and scan). 

In work [10], the performance evaluation techniques are 

mentioned. The ranges are defined for various key stores. 

Based on these ranges, the key stores are evaluated for 

latency and throughput. 

In research [11][12], the apache file system (HBase, 

Voltemort, VoltDB, Redis, Cassandra, and MySQL )  are 

discussed for various characterstics. 

In [13], google file system is discussed. In 2004, Google 

published a paper on a process called MapReduce that 

used such an architecture. With MapReduce, queries are 

split and distributed across parallel nodes and processed 

in parallel (the Map step). The results are then gathered 

and delivered (the Reduce step). Google was incredibly 

successful, so others wanted to copy the process. 

MapReduce was transformed from a framework that only 

Google owned to an Apache open source project named 

Hadoop. 

 

3. PROBLEM STATEMENT 

 We are awash in a flood of data today. In a broad range 

of application areas, data is being collected at 

unprecedented scale. Decisions that previously were 

based on guesswork, or on thoroughly constructed 

models of reality, can now be made based on the data 

itself by analyzing the data. Big Data analysis is required 

in every aspect of our modern society, including mobile 

services, retail industry, manufacturing, financial 

services, life sciences, and physical sciences. Usually 

enterprise systems are highly distributed and 

heterogeneous. They comprise a multitude of 

applications that are often interrelated. Clients connect to 

a frontend, which can be a Web server or a client 

application. A single client interaction may start a 

transaction that can span over more than a thousand 

components, which can be hosted on an equal number of 

physical machines [12]. Nevertheless, response time is 

critical in most situations. For example, form Web page 

loads the consumer expectation is constantly decreasing 

and is already as low as 50 ms to 2 s [3]. In a highly 

distributed system, it is difficult to determine the root 

cause of performance deterioration especially since it is 

often not tied to a single component, but to a specific 

interaction of components. System components 

themselves are highly heterogeneous due to the constant 

changes in application software and hardware. There is 

no unified code base and often access to the entire source 

code is not possible. Thus, an in depth analysis of the 

components or the integration of a profiling 

infrastructure is not possible. APM has similar 

requirements to current Web-based information systems 

such as weaker consistency requirements, geographical 

distribution, and asynchronous processing. Furthermore, 

the amount of data generated by monitoring applications 

can be enormous. Consider a common customer 

scenario: The customer’s data center has 10K nodes, in 

which each node can report up to 50K metrics with an 

average of 10K metrics. As mentioned above, the high 
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number of metrics result from the need for a high-degree 

of detail in monitoring, an individual metric for response 

time, failure rate, resource utilization, etc. of each system 

component can be reported. In the example above, with a 

modest monitoring interval of 10 seconds, 10 million 

individual measurements are reported per second. Even 

though a single measurement is small in size, below 100 

bytes, the mass of measurements poses similar big data 

challenges as those found in Web information system 

applications such as on-line advertisement [6] or on-line 

analytics for socialWeb data [7]. These applications use 

modern storage systems with focus on scalability as 

opposed to relational database systems with a strong 

focus on consistency. Because of the similarity of APM 

storage requirements to the requirements of Web 

information system applications, obvious candidates for 

new APM storage systems are key-value stores and their 

derivatives. Therefore, we present a performance 

evaluation of different key-value stores and related 

systems for APM storage. Specifically, we present our 

benchmarking effort on open source key-value stores and 

their close competitors. We compare the throughput of 

Apache Cassandra, Apache HBase, Project Voldemort, 

Redis, VoltDB, and a MySQL Cluster. Although, there 

would have been other candidates for the performance 

comparison, these systems cover a broad area of modern 

storage architectures. In contrast to previous work [8, 9, 

10], we present details on the maximum sustainable 

throughput of each system. We test the systems in two 

different hardware setups:  

 a memory 

 a disk-bound setup. 

Our contributions are threefold:  

 We present the use case and big data 

challenge of application performance 

management and specify its data and 

workload requirements. 

 We present an up to date 

performance comparison of six 

different data store architectures on 

two differently structured compute 

clusters. 

 We report on details of our 

experiences with these systems from 

an industry perspective  

 

4. OBJECTIVE 

The study aims at the performance evaluation of the key 

stores in context with application performance 

management (APM). We evaluate these systems with 

varying workload, deduce and then check for their 

performances. The key stores are basically open source. 

We can also evaluate the configuration complexity while 

setting up these data stores in industry standard. APM 

refers to the monitoring and managing of enterprise 

software systems. There are two common approaches to 

monitor enterprise systems: 

 An API-based approach, which provides a 

programming interface and a library that has to 

be utilized by all monitored components. 

 a black-box approach, which instruments the 

underlying system components or virtual 

machines to obtain information about the 

monitored system.  

 

The first approach gives a high degree of freedom to the 

programmer on how to utilize the monitoring toolbox.  

  

5. BENCHMARK KEY STORES AND SET 

UP 

We choose six key value stores to to get an overview of 

the performance impact of different storage architectures 

and design decisions. Our goal was not only to get a pure 

performance comparison but also a broad overview of 

available solutions. The key stores are as: 

5.1 HBase 

HBase [11] is an open source, distributed, column-

oriented database system based on     Google’s BigTable 

[5]. HBase is written in Java, runs on top of Apache 

Hadoop and Apache ZooKeeper and uses the Hadoop 

Distributed Filesystem (HDFS) [1] (also an open source 

implementation of Google’s file system GFS [5]) in 

order to provide fault-tolerance and replication. 
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Specifically, it provides linear and modular scalability, 

strictly consistent data access, automatic and 

configurable sharding of data. Tables in HBase can be 

accessed through an API as well as serve as the input and 

output for MapReduce jobs run in Hadoop. In short, 

applications store data into tables which consist of rows 

and column families containing columns. 

 

5.2 Voldemart  

Project Voldemort [14] is a distributed key-value store 

(developed by LinkedIn) that provides highly scalable 

storage system. With a simpler design compared to a 

relational database, Voldemort neither tries to support 

general relational model nor to guarantee full ACID 

properties, instead it simply offers a distributed fault-

tolerant, persistent hash table. In Voldemort, data is 

automatically replicated and partitioned across nodes 

such that each node is responsible for only a subset of 

data independent from all other nodes. This data model 

eliminates the central point of failure or the need for 

central coordination and allows cluster expansion 

without rebalancing all data, which ultimately allow 

horizontal scaling of Voldemort. Through simple API, 

data placement and replication can easily be tuned to 

accommodate a wide range of application domains. For 

instance, to add persistence, Voldemort can use different 

storage systems such as embedded databases (e.g., 

BerkeleyDB) or standalone relational data stores (e.g., 

MySQL). Other notable features of Voldemort are in-

memory caching coupled with storage system so a 

separate caching tier is no longer required and multi-

version data model for improved data availability in case 

of system failure. 

 

5.3 Cassandra 

Apache Cassandra is a second generation distributed key 

value store developed at Facebook. It was designed to 

handle very large amounts of data spread out across 

many commodity servers while providing a highly 

available service without single point of failure allowing 

replication even across multiple data centers as well as 

for choosing between synchronous or asynchronous 

replication for each update. Also, its elasticity allows 

read and write throughput, both increasing linearly as 

new machines are added, with no downtime or 

interruption to applications. In short, its architecture is a 

mixture of Google’s BigTable [5] and Amazon’s 

Dynamo [8]. As in Amazon’s Dynamo, every node in the 

cluster has the same role, so there is no single point of 

failure as there is in the case of HBase. The data model 

provides a structured key-value store where columns are 

added only to specified keys, so different keys can have 

different number of columns in any given family as in 

HBase. The main differences between Cassandra and 

HBase are columns that can be grouped into column 

families in a nested way and consistency requirements 

that can be specified at query time. Moreover, whereas 

Cassandra is a write-oriented system, HBase was 

designed to get high performance for intensive read 

workloads. 

 

5.4 VoltDB 

VoltDB [15] is an ACID compliant relational in-memory 

database system derived from the research prototype H-

Store ]. It has a shared nothing architecture and is 

designed to run on a multi-node 6Jedis, a Java client for 

Redis cluster by dividing the database into disjoint 

partitions by making each node the unique owner and 

responsible for a subset of the partitions. The unit of 

transaction is a stored procedure which is Java 

interspersed with SQL. Forcing stored procedures as the 

unit of transaction and executing them at the partition 

containing the necessary data makes it possible to 

eliminate round trip messaging between SQL statements. 

The statements are executed serially and in a single 

threaded manner without any locking or latching. The 

data is in-memory, hence, if it is local to a node a stored 

procedure can execute without any I/O or network 

access, providing very high throughput for transactional 

workloads. Furthermore, VoltDB supports multi-partition 

transactions, which require data from more than one 

partition and are therefore more expensive to execute. 

Multi-partition transactions can completely be avoided if 

the database is cleanly partitionable. 

 

5.5 My SQL 
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MySQL is the world’s most used relational database 

system with full SQL support and ACID properties. 

MySQL supports two main storage engines: MyISAM 

(for managing non-transactional tables) and InnoDB (for 

providing standard transactional support). In addition, 

MySQL delivers an in-memory storage abstraction for 

temporary or non-persistent data. Furthermore, the 

MySQL cluster edition is a distributed, multi-master 

database with no single point of failure. In MySQL 

cluster, tables are automatically sharded across a pool of 

low-cost commodity nodes, enabling the database to 

scale horizontally to serve read and write-intensive 

workloads. For our benchmarking we used MySQL 

v5.5.17 and InnoDB as the storage engine. Although 

MySQL cluster already provides shared-nothing 

distribution capabilities, instead we spread independent 

single-node servers on each node. Thus, we were able to 

use the already implemented RDBMS YCSB client 

which connects to the databases using JDBC and shards 

the data using a consistent hashing algorithm. For the 

storage of the data, a single table with a column for each 

value was used. 

 

5.6 Redis 

Redis is an in-memory, key-value data store with the data 

durability option. Redis data model supports strings, 

hashes, lists, sets, and sorted sets. Although Redis is 

designed for in-memory data, depending on the use case, 

data can be (semi-) persisted either by taking snapshot of 

the data and dumping it on disk periodically or by 

maintaining an append-only log of all operations. 

Furthermore, Redis can be replicated using a master-

slave architecture. Specifically, Redis supports relaxed 

form of master-slave replication, in which data from any 

master can be replicated to any number of slaves while a 

slave may acts as a master to other slaves allowing Redis 

to model a single-rooted replication tree. Moreover, 

Redis replication is non-blocking on both the master and 

slave, which means that the master can continue serving 

queries when one or more slaves are synchronizing and 

slaves can answer queries using the old version of the 

data during the synchronization. This replication model 

allows for having multiple slaves to answer read-only 

queries resulting in highly scalable architecture. For our 

benchmark, we used version 2.4.2.  

 

 

 

 

6. METHODOLOGY 

We are showing the workload specification in this part of 

our work. Although the experimental results are not only 

the workload specification are mentioned in the synopsis. 

We defined five different workloads. They are shown in 

Table below. As mentioned above, APM data is append 

only, which is why we only included insert, read, and 

scan operations. Since not all tested stores support scans, 

we defined workloads with (RS,RSW) and without scans 

(R,RW,W). As explained above, APM systems exhibit a 

write to read ratio of 100:1 or more as defined in 

workloads. However, to give a more complete view on 

the systems under test, we defined workloads that vary 

the write to read ratio. Workload R and RS are read-

intensive where 50% of the read accesses in RS are 

scans. Workload R W and RSW have an equal ratio of 

reads and writes. These workloads are commonly 

considered write-heavy in other environments. We 

perform these experiments for deducing the throughput 

and latency of the key data store. 

 

Workload             % Read % Scans % Inserts 

R  95 0 5 

RW  50 0 50 

W  1 0 99 

RS  47 47 6 

RSW 2 25 25 50 

 

7. DETAIL OF RESEARCH WORK 

We present the challenges that incur while storing 

monitoring data generated by application performance 

management tools. By comparing the performance of 

various key stores base on the workloads we deduce the 

required set up. Experiments are not shown only the 

methology has mentioned.  
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