
International Journal of communication and computer Technologies, ISSN: 2278-9723

Available at http://www.ijccts.org

 Volume 01 –, Issue: 01 Page 1

International Journal of Communication and Computer Technologies www.ijccts.org

A COMPREHENSIVE PERFORMANCE EVALUATION OF DATA STORES IN

CONTEXT WITH APPLICATION MANAGEMENT TOOLS

SACHIN SHARMA

GyanVihar University

Received: 20-06-2012, Revised: 16-08-2012, Accepted: 28-09-2012, Published online: 22-11-2012

ABSTRACT

As of 2012, limits on the size of data sets that are

feasible to process in a reasonable amount of time were

on the order of exabytes of data.business

informatics. The world's technological per-capita

capacity to store information has roughly doubled every

40 months since the 1980s, as of 2012, every day

2.5 quintillion (2.5×1018) bytes of data were created and

it is required to analyze a vast amount of data. A number

of companies have developed sophisticated

monitoring tools for data analysis. For specialized APIs,

can monitor single invocations. To maximize the benefit

of data monitoring, the data has to be stored for an

extended period of time for ulterior analysis. This new

wave of big data analytics imposes new challenges

especially for the application performance monitoring

systems. The monitoring data has to be stored in a

system that can sustain the high data rates and at the

same time enable an up-to-date view of the underlying

infrastructure. With the advent of modern key-value

stores, a variety of data storage systems have emerged

that are built with a focus on scalability and high data

rates as predominant in this monitoring use case. In this

work, we present our experience and a comprehensive

performance evaluation of six modern (open-source) data

stores in the context of application performance

monitoring.

We evaluated these systems with data and workloads that

can be found in application performance monitoring, as

well as, on-line advertisement, power monitoring, and

many other use cases. We present our insights not only

as performance results but also as lessons learned and

our experience relating to the setup and configuration

complexity of these data stores in an industry setting.

1. INTRODUCTION

Enterprise systems today are very large and comprise

complete data centers with thousands of servers. These

systems are heterogeneous and have many

interdependencies which make their administration a

very complex task. To give administrators an on-line

view of the system strength, monitoring frameworks

have been developed. Common examples are Ganglia [4]

and Nagios [5]. These are widely used in open-source

projects and academia (e.g.Wikipedia). However, in

industry settings, in presence of rigid response time and

availability requirements, a more thorough view of the

monitored system is needed. Application Performance

Management (APM) tools, such as Dynatrace2, Quest

PerformaSure3, AppDynamics4, and CA APM5 provide

a more sophisticated view on the monitored system.

These tools instrument the applications to retrieve

information about the response times of specific services

or combinations of services, as well as about failure

rates, resource utilization, etc. Different monitoring

targets such as the response time of a specific servlet or

the CPU utilization of a host are usually referred to as

metrics. In modern enterprise systems it is common to

have thousands of different metrics that are reported

from a single host machine. In order to allow for detailed

on-line as well as off-line analysis of this data, it is

persisted at a centralized store.

http://en.wikipedia.org/wiki/Exabytes
http://en.wikipedia.org/wiki/Business_informatics
http://en.wikipedia.org/wiki/Business_informatics
http://en.wikipedia.org/wiki/Quintillion

International Journal of communication and computer Technologies, ISSN: 2278-9723

Available at http://www.ijccts.org

 Volume 01 –, Issue: 01 Page 2

International Journal of Communication and Computer Technologies www.ijccts.org

1.1 INTRODUCTION TO BIG DATA

In the starting, the data was in the form of files and soon

emerged as database. But as the Tedd Codd’s stone tablet

inscribed in 1970 and began to gain commercial attention

in 1980, the need for Big Data arise. The phrase Big Data

refers to huge, frequently increasing and often formless

datasets from varied sources, stored in remote server

farms, and mined for significance. Many internet-based

companies hold petabytes of data, Yahoo alone has over

25 petabytes [1]. In 2009, more than one petabyte (1015

bytes) of personal location-based data was generated

across the globe [2]. In 2010, every continent on the

planet produced in excess of 50 petabytes of data.

By some accounts, 90% of the recorded data in the world

today has been created in the last two years - and the rate

is accelerating. Big data is not only huge, but also

diverse. Big data sources include environmental sensor

networks, traffic monitoring systems, mobile phones,

satellite imagery, video surveillance, posts to social

media sites, and transaction records of online purchases,

electronic health records, and satellite imagery, just to

list a few important ones. If your organization is just like

others, you are capturing and sharing more data from

more sources than ever before. As a result, you are facing

the challenge of managing high volume and high-

velocity data streams quickly and analytically. Big Data

is all about finding a needle of value in a deposit of

unstructured information. Companies are now investing

in solutions that infer consumer behavior, detect fraud,

and even predict the future!

McKinsey released a report in May 2011 stating that

leading companies are using big data analytics to gain

competitive advantage. They predict a 60% margin

increase for retail companies who are able to harvest the

power of big data. To support these new analytics, IT

strategies are mushrooming; the newest techniques

include brute force assaults on massive information

sources, and filtering data through specialized parallel

processing and indexing mechanisms. The results are

correlated across time and meaning, and often merged

with traditional corporate data sources. New data

discovery techniques include spectacular visualization

tools and interactive semantic query experiences.

Knowledge workers and data scientists sift through

filtered data asking one unrelated explorative question

after another. As these supporting technologies emerge

from graduate research programs into the world of

corporate IT, IT strategists, planners, and architects need

to both understand them and ensure that they are

International Journal of communication and computer Technologies, ISSN: 2278-9723

Available at http://www.ijccts.org

 Volume 01 –, Issue: 01 Page 3

International Journal of Communication and Computer Technologies www.ijccts.org

enterprise grade. Planning a Big Data architecture is not

about understanding just what is different. It’s also about

how to integrate what’s new to what you already have –

from database-and-BI infrastructure to IT tools, and end

user applications. Oracle’s own product announcements

in hardware, software, and new partnerships have been

designed to change the economics around Big Data

investments and the accessibility of solutions. The real

industry challenge is not to think of Big Data as a

specialized science project, but rather integrate it into

mainstream IT.

1.2 APPLICATION PERFORMANCE

MANAGEMENT

 Application performance management refers to the

monitoring and managing of enterprise software systems.

An example of an enterprise system is shown in Figure

above.

There are different ways to manage this kind of

architecture. A common approach is the ARM standard

[3]. In this approach every section has to implement the

ARM API that is available for C and Java. Prominent

ARM instrumented applications are the Apache HTTP

server and IBM DB2. Although several common

enterprise software systems are already ARM enabled it

is often not feasible to implement the ARM API in

existing systems. Another approach that is applicable for

Java based systems is byte code instrumentation. This is

enabled by the Java Virtual Machine Tool Interface that

was specified in JSR-163 and introduced in J2SE 5.0. Its

intention is to present an interface for profiling and

debugging. Byte code instrumentation allows

augmenting Java based software components with agents

that have access to the state and the method invocations.

The approach that is used in the CA APM products

enables monitoring components, tracing transactions, and

root cause analysis without changing the code base of the

monitored system. The monitoring can be done on a very

high level of detail. Current systems can generate

millions of measurements per second where each data

point may contain important information and therefore

has to be stored safely. To fully understand the state of

the monitored systems thousands of queries have to be

processed on the measurements per second. Due to these

enormous insert and query rates the underlying data store

has to be highly scalable. To support the necessary insert

rates current systems often store the measurement

information in at least on disk and process them

asynchronously and in batch. The introduction of an

integrated data store would allow more sophisticated data

analysis like trend analysis that current systems cannot

offer.

1.3 APPLICATION REPONSE

MANAGEMENT

ARM is an API jointly developed by an industry

partnership that is used to monitor the availability and

performance of applications. This monitoring is done

from the perspective of the application itself, so it

reflects those units of work that are important from the

perspective of the business. The ARM standard is

vendor-neutral and is targeted toward managing the

performance of distributed applications.

International Journal of communication and computer Technologies, ISSN: 2278-9723

Available at http://www.ijccts.org

 Volume 01 –, Issue: 01 Page 4

International Journal of Communication and Computer Technologies www.ijccts.org

2. LITERATURE REVIEW

In literature [1], the key points of Big Data are

mentioned. The Big Data definition and its

characteristics (variety, volume, and velocity) are

explained in the work. The Hadoop File System is also

explained. Hadoop is a scalable fault-tolerant file

distributed system for data storage and processing. Core

Hadoop is of two types: Hadoop File Distributed System

(HFDS) and Map-Reduce: Fault Tolerant Distributed

System.

In work [2], the need of switching to Big Data has given.

The data is huge not in terms of size but it also contains a

number of other variations as velocity, variety, etc.

It described [3], the various key data stores that we are

requiring for the enterprise set up. The various workloads

are also mentioned that we require for deducing the

latency and throughput of the monitoring data. The APM

tools are also mentioned here.

In the research work [4][5], the monitoring frameworks

have been defined. The design, structure and framework

of the Ganglia monitoring system and Nagois monitoring

system has been discussed.

In [6][7][8], the benchmark key data stores are discussed.

The key data stores are the database system with

different properties and can be employed in enterprise

system as per the industry requirements.

In [9], the scalability features of the key data stores are

discussed. The workloads are also mentioned with

different specification (read, write and scan).

In work [10], the performance evaluation techniques are

mentioned. The ranges are defined for various key stores.

Based on these ranges, the key stores are evaluated for

latency and throughput.

In research [11][12], the apache file system (HBase,

Voltemort, VoltDB, Redis, Cassandra, and MySQL) are

discussed for various characterstics.

In [13], google file system is discussed. In 2004, Google

published a paper on a process called MapReduce that

used such an architecture. With MapReduce, queries are

split and distributed across parallel nodes and processed

in parallel (the Map step). The results are then gathered

and delivered (the Reduce step). Google was incredibly

successful, so others wanted to copy the process.

MapReduce was transformed from a framework that only

Google owned to an Apache open source project named

Hadoop.

3. PROBLEM STATEMENT

 We are awash in a flood of data today. In a broad range

of application areas, data is being collected at

unprecedented scale. Decisions that previously were

based on guesswork, or on thoroughly constructed

models of reality, can now be made based on the data

itself by analyzing the data. Big Data analysis is required

in every aspect of our modern society, including mobile

services, retail industry, manufacturing, financial

services, life sciences, and physical sciences. Usually

enterprise systems are highly distributed and

heterogeneous. They comprise a multitude of

applications that are often interrelated. Clients connect to

a frontend, which can be a Web server or a client

application. A single client interaction may start a

transaction that can span over more than a thousand

components, which can be hosted on an equal number of

physical machines [12]. Nevertheless, response time is

critical in most situations. For example, form Web page

loads the consumer expectation is constantly decreasing

and is already as low as 50 ms to 2 s [3]. In a highly

distributed system, it is difficult to determine the root

cause of performance deterioration especially since it is

often not tied to a single component, but to a specific

interaction of components. System components

themselves are highly heterogeneous due to the constant

changes in application software and hardware. There is

no unified code base and often access to the entire source

code is not possible. Thus, an in depth analysis of the

components or the integration of a profiling

infrastructure is not possible. APM has similar

requirements to current Web-based information systems

such as weaker consistency requirements, geographical

distribution, and asynchronous processing. Furthermore,

the amount of data generated by monitoring applications

can be enormous. Consider a common customer

scenario: The customer’s data center has 10K nodes, in

which each node can report up to 50K metrics with an

average of 10K metrics. As mentioned above, the high

International Journal of communication and computer Technologies, ISSN: 2278-9723

Available at http://www.ijccts.org

 Volume 01 –, Issue: 01 Page 5

International Journal of Communication and Computer Technologies www.ijccts.org

number of metrics result from the need for a high-degree

of detail in monitoring, an individual metric for response

time, failure rate, resource utilization, etc. of each system

component can be reported. In the example above, with a

modest monitoring interval of 10 seconds, 10 million

individual measurements are reported per second. Even

though a single measurement is small in size, below 100

bytes, the mass of measurements poses similar big data

challenges as those found in Web information system

applications such as on-line advertisement [6] or on-line

analytics for socialWeb data [7]. These applications use

modern storage systems with focus on scalability as

opposed to relational database systems with a strong

focus on consistency. Because of the similarity of APM

storage requirements to the requirements of Web

information system applications, obvious candidates for

new APM storage systems are key-value stores and their

derivatives. Therefore, we present a performance

evaluation of different key-value stores and related

systems for APM storage. Specifically, we present our

benchmarking effort on open source key-value stores and

their close competitors. We compare the throughput of

Apache Cassandra, Apache HBase, Project Voldemort,

Redis, VoltDB, and a MySQL Cluster. Although, there

would have been other candidates for the performance

comparison, these systems cover a broad area of modern

storage architectures. In contrast to previous work [8, 9,

10], we present details on the maximum sustainable

throughput of each system. We test the systems in two

different hardware setups:

 a memory

 a disk-bound setup.

Our contributions are threefold:

 We present the use case and big data

challenge of application performance

management and specify its data and

workload requirements.

 We present an up to date

performance comparison of six

different data store architectures on

two differently structured compute

clusters.

 We report on details of our

experiences with these systems from

an industry perspective

4. OBJECTIVE

The study aims at the performance evaluation of the key

stores in context with application performance

management (APM). We evaluate these systems with

varying workload, deduce and then check for their

performances. The key stores are basically open source.

We can also evaluate the configuration complexity while

setting up these data stores in industry standard. APM

refers to the monitoring and managing of enterprise

software systems. There are two common approaches to

monitor enterprise systems:

 An API-based approach, which provides a

programming interface and a library that has to

be utilized by all monitored components.

 a black-box approach, which instruments the

underlying system components or virtual

machines to obtain information about the

monitored system.

The first approach gives a high degree of freedom to the

programmer on how to utilize the monitoring toolbox.

5. BENCHMARK KEY STORES AND SET

UP

We choose six key value stores to to get an overview of

the performance impact of different storage architectures

and design decisions. Our goal was not only to get a pure

performance comparison but also a broad overview of

available solutions. The key stores are as:

5.1 HBase

HBase [11] is an open source, distributed, column-

oriented database system based on Google’s BigTable

[5]. HBase is written in Java, runs on top of Apache

Hadoop and Apache ZooKeeper and uses the Hadoop

Distributed Filesystem (HDFS) [1] (also an open source

implementation of Google’s file system GFS [5]) in

order to provide fault-tolerance and replication.

International Journal of communication and computer Technologies, ISSN: 2278-9723

Available at http://www.ijccts.org

 Volume 01 –, Issue: 01 Page 6

International Journal of Communication and Computer Technologies www.ijccts.org

Specifically, it provides linear and modular scalability,

strictly consistent data access, automatic and

configurable sharding of data. Tables in HBase can be

accessed through an API as well as serve as the input and

output for MapReduce jobs run in Hadoop. In short,

applications store data into tables which consist of rows

and column families containing columns.

5.2 Voldemart

Project Voldemort [14] is a distributed key-value store

(developed by LinkedIn) that provides highly scalable

storage system. With a simpler design compared to a

relational database, Voldemort neither tries to support

general relational model nor to guarantee full ACID

properties, instead it simply offers a distributed fault-

tolerant, persistent hash table. In Voldemort, data is

automatically replicated and partitioned across nodes

such that each node is responsible for only a subset of

data independent from all other nodes. This data model

eliminates the central point of failure or the need for

central coordination and allows cluster expansion

without rebalancing all data, which ultimately allow

horizontal scaling of Voldemort. Through simple API,

data placement and replication can easily be tuned to

accommodate a wide range of application domains. For

instance, to add persistence, Voldemort can use different

storage systems such as embedded databases (e.g.,

BerkeleyDB) or standalone relational data stores (e.g.,

MySQL). Other notable features of Voldemort are in-

memory caching coupled with storage system so a

separate caching tier is no longer required and multi-

version data model for improved data availability in case

of system failure.

5.3 Cassandra

Apache Cassandra is a second generation distributed key

value store developed at Facebook. It was designed to

handle very large amounts of data spread out across

many commodity servers while providing a highly

available service without single point of failure allowing

replication even across multiple data centers as well as

for choosing between synchronous or asynchronous

replication for each update. Also, its elasticity allows

read and write throughput, both increasing linearly as

new machines are added, with no downtime or

interruption to applications. In short, its architecture is a

mixture of Google’s BigTable [5] and Amazon’s

Dynamo [8]. As in Amazon’s Dynamo, every node in the

cluster has the same role, so there is no single point of

failure as there is in the case of HBase. The data model

provides a structured key-value store where columns are

added only to specified keys, so different keys can have

different number of columns in any given family as in

HBase. The main differences between Cassandra and

HBase are columns that can be grouped into column

families in a nested way and consistency requirements

that can be specified at query time. Moreover, whereas

Cassandra is a write-oriented system, HBase was

designed to get high performance for intensive read

workloads.

5.4 VoltDB

VoltDB [15] is an ACID compliant relational in-memory

database system derived from the research prototype H-

Store]. It has a shared nothing architecture and is

designed to run on a multi-node 6Jedis, a Java client for

Redis cluster by dividing the database into disjoint

partitions by making each node the unique owner and

responsible for a subset of the partitions. The unit of

transaction is a stored procedure which is Java

interspersed with SQL. Forcing stored procedures as the

unit of transaction and executing them at the partition

containing the necessary data makes it possible to

eliminate round trip messaging between SQL statements.

The statements are executed serially and in a single

threaded manner without any locking or latching. The

data is in-memory, hence, if it is local to a node a stored

procedure can execute without any I/O or network

access, providing very high throughput for transactional

workloads. Furthermore, VoltDB supports multi-partition

transactions, which require data from more than one

partition and are therefore more expensive to execute.

Multi-partition transactions can completely be avoided if

the database is cleanly partitionable.

5.5 My SQL

International Journal of communication and computer Technologies, ISSN: 2278-9723

Available at http://www.ijccts.org

 Volume 01 –, Issue: 01 Page 7

International Journal of Communication and Computer Technologies www.ijccts.org

MySQL is the world’s most used relational database

system with full SQL support and ACID properties.

MySQL supports two main storage engines: MyISAM

(for managing non-transactional tables) and InnoDB (for

providing standard transactional support). In addition,

MySQL delivers an in-memory storage abstraction for

temporary or non-persistent data. Furthermore, the

MySQL cluster edition is a distributed, multi-master

database with no single point of failure. In MySQL

cluster, tables are automatically sharded across a pool of

low-cost commodity nodes, enabling the database to

scale horizontally to serve read and write-intensive

workloads. For our benchmarking we used MySQL

v5.5.17 and InnoDB as the storage engine. Although

MySQL cluster already provides shared-nothing

distribution capabilities, instead we spread independent

single-node servers on each node. Thus, we were able to

use the already implemented RDBMS YCSB client

which connects to the databases using JDBC and shards

the data using a consistent hashing algorithm. For the

storage of the data, a single table with a column for each

value was used.

5.6 Redis

Redis is an in-memory, key-value data store with the data

durability option. Redis data model supports strings,

hashes, lists, sets, and sorted sets. Although Redis is

designed for in-memory data, depending on the use case,

data can be (semi-) persisted either by taking snapshot of

the data and dumping it on disk periodically or by

maintaining an append-only log of all operations.

Furthermore, Redis can be replicated using a master-

slave architecture. Specifically, Redis supports relaxed

form of master-slave replication, in which data from any

master can be replicated to any number of slaves while a

slave may acts as a master to other slaves allowing Redis

to model a single-rooted replication tree. Moreover,

Redis replication is non-blocking on both the master and

slave, which means that the master can continue serving

queries when one or more slaves are synchronizing and

slaves can answer queries using the old version of the

data during the synchronization. This replication model

allows for having multiple slaves to answer read-only

queries resulting in highly scalable architecture. For our

benchmark, we used version 2.4.2.

6. METHODOLOGY

We are showing the workload specification in this part of

our work. Although the experimental results are not only

the workload specification are mentioned in the synopsis.

We defined five different workloads. They are shown in

Table below. As mentioned above, APM data is append

only, which is why we only included insert, read, and

scan operations. Since not all tested stores support scans,

we defined workloads with (RS,RSW) and without scans

(R,RW,W). As explained above, APM systems exhibit a

write to read ratio of 100:1 or more as defined in

workloads. However, to give a more complete view on

the systems under test, we defined workloads that vary

the write to read ratio. Workload R and RS are read-

intensive where 50% of the read accesses in RS are

scans. Workload R W and RSW have an equal ratio of

reads and writes. These workloads are commonly

considered write-heavy in other environments. We

perform these experiments for deducing the throughput

and latency of the key data store.

Workload % Read % Scans % Inserts

R 95 0 5

RW 50 0 50

W 1 0 99

RS 47 47 6

RSW 2 25 25 50

7. DETAIL OF RESEARCH WORK

We present the challenges that incur while storing

monitoring data generated by application performance

management tools. By comparing the performance of

various key stores base on the workloads we deduce the

required set up. Experiments are not shown only the

methology has mentioned.

International Journal of communication and computer Technologies, ISSN: 2278-9723

Available at http://www.ijccts.org

 Volume 01 –, Issue: 01 Page 8

International Journal of Communication and Computer Technologies www.ijccts.org

REFERENCES

 [1] Python,Python programming language,

http://www.Python.org/ (Online. Accessed 24 August

2012)

[2] Partick,Ohlinger, Wal-Mart’s Data Warehouse,

Vienna University of Technology,2006.

[3] Dnaiel.J. Abadi. Data Management in the

Cloud:Limitations and Opportunities. IEEE Data Eng.

Bull, 32(1):3–12, 2009.

[4] Fay, Chang.et al. Bigtable: A distributed storage

system for structured data. In OSDI, 2006.

[5] Giueppe, DeCandia. et al. Dynamo: Amazon’s

Highly Available Key-value Store. In SOSP, page 220,

2007.

[6] Avinash, Lakshman. Cassandra-A Decentralized

Structured Storage system. In LADIS, 2009.

[7] Memcached,

http://code.google.com/p/memcached/wiki/NewOvervie

w (Online. Accessed 24 August 2012)

[8] Loannis,Konstantinou , Distributed Indexing of Web

Scale Datasets for the Cloud,MDAC’10, 2010

[9] An,Mingyuan.Using Index in the MapReduce

Framework ,IEEE 10.1109, 2010.

[10] Vinay,Sudhakaran.Programming Abstractions for

Dynamic, Distributed,Data-intensive computing , Msc

dissertation 2011.

[11] Omkar,kulkal. Benchmarking an Amadaho-balanced

cluster for Data Intensive Computing, Msc dissertation

2011.

[12] Jeff, Terrace. Object storage on CRAQ: High-

throughput chain replication for read-mostly workloads.

In Proc. USENIX Annual Technical Conference, June

2009.

[13] Robbert,van. Renesse. Chain replication for

supporting high throughput and availability. In Proc. 6th

USENIX OSDI, Dec. 2004.

[14] Add data replication to memcached.

http://repcached.lab.klab.org/. (Online. Accessed 24

August 2012)

[15] Ion,Stoica.Chord: A scalable peer-to-peer lookup

service for Internet applications. In Proc. ACM

SIGCOMM, Aug. 2001.

[16] L.Avinash,M.Prashant,Cassandra - A Decentralized

Structured Storage System,ACIM,2009.

[17] Fay Chang, Jeffrey Dean, Sanjay Ghemawat,

Wilson C.Hsieh, Deborah A. Wallach, Michael Burrows,

Tushar Chandra, Andrew Fikes, and Robert E. Gruber,

Bigtable: A distributed storage system for structured

data, ACM Trans.Comput. Syst. (2008), no. 2.

[18] MongoDB, http://www.mongodb.org/.(Online.

Accessed 24 August 2012).

[19] Project Voldemort, http://project-

voldemort.com/.(Online. Accessed 24 August 2012).

[20] Brian F. Cooper, Adam Silberstein, Erwin Tam,

Raghu Ramakrishnan, and Russell Sears, Benchmarking

cloud serving systems with ycsb, SoCC, 2010, pp. 143–

154.

[21] NOSQL store, http://NOSQL-database.org/ (Online.

Accessed 24 August 2012)

[22] C. J.Date. (2003). Introduction to Database Systems.

8th edition, Addison-Wesley. ISBN 0-321-19784-4.

[23] M.StoneBreaker.SQL databases V. NOSQL

databases, Communications of the ACM, Vol. 53 No. 4,

pp.10-11.

[24] A Conversation with Werner Vogels.

http://queue.acm.org/detail.cfm?id=1142065,

2006.(Online access 17June 2012)

[25] Theo, Harder. Principles of transaction-oriented

database recovery. Computing Surveys, 1983.

http://code.google.com/p/memcached/wiki/NewOverview
http://code.google.com/p/memcached/wiki/NewOverview
http://repcached.lab.klab.org/

